
Representing Calendrical Algorithms and Data in Prolog and Prolog IIILanguagesPavol N�avrat and M�aria Bielikov�aSlovak Technical University, Dept. of Computer Science and Engineering,Ilkovi�cova 3, 812 19 Bratislava, SlovakiaE-mail: fnavrat,bielikovag@elf.stuba.skAbstract. The paper reports on a study to develop solutions for a chosen problem in two related, but di�erentlanguages. Moreover, the languages re
ect two related, but di�erent programming paradigms: logic programing,and constraint logic programming, respectively. We use Prolog to describe calendars and their mutual conver-sions. Next, we use Prolog III to describe the same. We discuss suitability of both languages for this kind oftask. Prolog III as a logic programming language with constraints allows writing a program which is both moregeneral (i.e., covering a broader range of cases) and more abstract (i.e., expressed on a higher level of abstractiondue to the use of constraints).Key words: Logic Programming, Constraints, Calendar, Prolog, Prolog IIIIntroductionConstraint logic programming plays an important role among the concepts related to declarativeprogramming. This framework encapsulates both the paradigms of constraint solving and logic pro-gramming [4]. The constraint solving paradigm allows concise and natural representation of complexproblems because of two main reasons:� the constraints declare properties in the domain of discourse in a straightforward way as opposedto having these properties coded indirectly into say, Prolog terms or Lisp lists� the constraints provide for representing properties implicitly by a relation-de�ning formula asopposed to having listed relevant bindings to variables. Moreover, in combination with a logicprogramming paradigm, there is available an overall rule-based framework to reason about con-straints.In this paper, we present an example of developing solutions to one problem in both Prolog andProlog III languages. The example is taken from the area of calendrical calculations. Several calendars,both recent and historical were described using the functional programming paradigm in Common Lispby [3, 7].We develop a possibly more general description of calendrical calculations using the constraint logicprogramming paradigm (in Prolog III language) and compare it to description of the same using thelogic programming paradigm (in Prolog language).Our aim is to identify kinds of tasks that are with advantage approached with a language withconstraints. Our method is to compare and analyze solutions of the same fairly simple problem insimilar languages with and without constraints. Therefore, any conclusions we arrive at are to beviewed with this methodological limitation in mind.Method for calendrical calculationsThe method requires to describe each speci�c calendar in a way that allows converting from it toso called absolute date and converting from an absolute date into it. The method of absolute datesestablishes an arbitrary starting point as day 1 and speci�es a date by giving a day number relative tothe starting point [5]. The variation of the method employed by Dershowitz and Reingold [3] assumes



that Monday 1st, 1 C.E. (Common era; or, A.D., Anno Domini) according to the Gregorian calendaris the absolute date 1. The choice is arbitrary and not of fundamental importance.Our approach is to represent the relevant knowledge declaratively. We shall accomplish this in twoways: using the logic programming language Prolog and the constraint logic programming languageProlog III. We shall concentrate on those parts that describe calendars di�erently.Prolog III LanguageA program in Prolog III is a set of clauses. Each clause has the form (to achieve compatibility andreadability of Prolog programs, we will make use of the standard Edinburgh syntax option):t0 : � t1; t2; t3; . . . tn Swhere n can be zero, ti are terms and S is a possibly empty system of constraints (an empty system issimply not present). The constraint system is a �nite sequence of constraints (i.e., syntactic objects,formed by the symbol that expresses a relation, and a term or pair of terms denoting values belongingto the relation) which are separated by commas and enclosed by braces. For example a clauseis_in_interval(Num, [Low, Up]) { Num >= Low, Num =< Up }.asserts that relation is in interval between number Num and interval [Low; Up] holds under thespeci�ed constraint. The clause from this example has an empty body (the right hand side of therule). It is called a fact.For comparison, in Prolog the same relation would have to be declared by a ruleis_in_interval(Number, [Low, Up]) :-Number >= Low, Number =< Up.At the �rst glance, the di�erence between Prolog and Prolog III seems to be purely syntactical.However, the important concept of Prolog III making the di�erence is that in Prolog III as a constraintlogic programming language, the uni�cation algorithm that is used by Prolog is augmented by a solverfor the particular domain. The solver must be able to decide at any moment whether the remainingconstraints are solvable. A Prolog III program still needs to search a database of facts and rules, butit can use constraints to cut o� many branches of the searched tree.When Prolog III deals with the domain of real numbers, there is another feature in which it di�ersfrom Prolog. Prolog III can perform opeartions with uninstantiated variables, e.g. in the absence ofcomplete information the answer might be a symbolic expression or even a constraint.Another kind of clauses in Prolog III is a rule, such as the two clausesleap_year(gregorian, Year) :-mod(Year, 4, 0), % every 4th year is a leap year, exceptmod(Year, 100, Year_mod_100) % every 100th year is not a leap year, except{ Year_mod_100 # 0 }.leap_year(gregorian, Year) :-mod(Year, 400, 0). % every 400th year is a leap yearThese assert the known fact that for any year in Gregorian calendar, it is a leap year if and only if itis divisible by 4 and it is not a century year (expressed by the �rst clause) or if it is divisible by 400(expressed by the second clause).For comparison, in Prolog the same relation would be declared by the ruleleap_year(gregorian, Year) :-0 is Year mod 4, % every 4th year is a leap year, exceptnot( 0 is Year mod 100). % every 100th year is not a leap year, exceptleap_year(gregorian, Year) :-0 is Year mod 400. % every 400th year is a leap yearWe note that due to the fact that Prolog III unfortunately does not allow operations such as mod tobe used in constraints, the Prolog III rule is to be formulated with an additional auxiliary variable toallow referring to the value of mod within the constraint.



Conversion to/from absolute dateWe have been able to develop a fairly uniform representation of calculations for di�erent calendars.We shall concentrate mainly on Gregorian calendar. Our results can be easily applied for other calen-dars.We shall represent dates essentially as triples of integer numbers. First number denotes month, thesecond number represents day in a particular month, and the third number represents a year. Whenit is more suitable to treat the triple as one structured data item, we write date as a three elementlist.If we wish to convert dates from one calendar, say X to another, say Y , we need1. to convert the date for calendar X to absolute date2. to convert the absolute date into calendar Y dateTo achieve a complete symmetry and 
exibility, we need for each calendar to know how it is relatedto the absolute date. Declarative representation in Prolog requires to de�ne two predicates absolu-te from calendar date and calendar date from absolute. Here we present the predicates for conversionto/from Gregorian calendar. The �rst parameter identi�es the calendar. The predicates assume thesecond parameter is instantiated. The third parameter will be computed.% Prolog descriptionabsolute_from_calendar_date(gregorian, [Month,Day,Year], Absolute_date):-days_in_prior_months_in_year(gregorian, Month, Year, MDays),Absolute_date isDay + % Days so far this monthMDays + % + Days so far in this month(Year - 1)*365 + % + Days in prior years(Year - 1)//4 - % + Julian leap days in prior years(Year - 1)//100 + % - prior century years(Year - 1)//400. % + prior years divisible by 400calendar_date_from_absolute(gregorian, Absolute_date, [Month,Day,Year]):-Approx is Absolute_date//366, % approximation of yearyear_from_absolute(gregorian, Absolute_date, Approx, Year),month_from_absolute(gregorian, Absolute_date, Year, 1, Month),absolute_from_calendar_date(gregorian, [Month,1,Year], Absolute_date1),Day is Absolute_date - Absolute_date1 + 1.The calculation of the absolute date from Gregorian date is done by counting the number of days inprior years (expression (Y ear�1)�365 + (Y ear�1)==4 � (Y ear�1)==100 + (Y ear�1)==400), thenumber of days in prior months of the current year (predicate days in prior months in year), and thenumber of days in the current month (given by date in the second argument). Operator '//' denotesthe (truncated) integer quotient of two integers.Gregorian date is computed from the absolute date by approximating the year �rst. Using theapproximate value for the year, search for precise values of year and month is performed (predicatesyear from absolute and month form absolute). The day of the month is then determined by subtrac-tion.Actually, the declarative description of algorithm for conversion between the Gregorian date andthe absolute date is de�ned by the predicate absolute from calendar date. Because constraint logicprogramming languages (e.g. Prolog III) are capable of treating also uninstantiated variables involvedin numerical relations, in Prolog III it is possible to describe the relation between the absolute dateand the Gregorian date in both directions by just one clause.In Prolog III, the numeric domain is understood to be the set of real numbers in the mathematicalsense, including both rational numbers and irrational numbers. In computations, however, only rationalnumbers take part. It is a property of the language that if a variable is su�ciently constrained torepresent a unique real number then this number is necessarily a rational number [2]. One of the



restrictions in Prolog III is that it is not possible to constrain a term to represent an integer value.Hence we adopt the following way of processing integers. We de�ne the set of constraints that applyto rational numbers. At the end of the process, we perform a complete enumeration of the possiblevalues of these variables by means of the prede�ned predicate enum.The general structure of the program for conversion to/from absolute date for any calendar couldbe:date absolute(Calendar, [Month, Day, Year], Absolute date) :-constraints over predicates,generator for the Month, Day, Yearfprimitive constraintsg.where generator is used to instantiate the date in a given calendar (when the date is uninstantiated).The generator forces the solution to be in the required (�nite and integer) domain.% Prolog III descriptiondate_absolute(gregorian, [Month, Day, Year], Absolute_date) :-% Month starts on a day From (integer) and ends ...% ... on a day To in a year Yeardelayed_month_days_in_year(gregorian, Month, Year, [From, To]),delayed_div(Year - 1, 4, Year_div_4),delayed_div(Year - 1, 100, Year_div_100),delayed_div(Year - 1, 400, Year_div_400),enum(Year), % enumerate Year when it is not specifiedenum(Month), % enumerate Month when it is not specifiedenum(Day), % enumerate Day when it is not specified! % we are interested only in a first ...% ... solution which is the only one{ Absolute_date =Day + % Days so far this monthFrom + % + Days so far in this month(Year - 1) * 365 + % + Days in prior yearsYear4 - % + Julian leap days in prior yearsYear100 + % - prior century yearsYear400, % + prior years divisible by 400Year >= Absolute_date/366, % approximation of a yearMonth =< 12, Month >= 1, % bounds for a monthDay =< To - From, Day >= 1 % bounds for a day}.It is to be noted that the order of predicates in the body of the rule is important. Also note that we haveadopted a "test and generate" paradigm [6]. It can radically improve the search. Instrumental here werethe properties of Prolog III. Let us assume for a moment we would have followed the usual "generateand test" paradigm. The date would be generated �rst. To arrive at the �nal, accepted instantiationof Y ear, Month and Day for a given absolute date, i.e. to generate the date, enumeration of years(starting possibly from the approximated year to reduce the search, similarly to the Prolog solutionabove), then of months in these years and �nally of days in these months is necessary. On the otherhand, in the solution given above a day is calculated simply by resolving constraints.Because the arguments of constraints over predicates are not generated at the time of their executionwe use delay mechanism by means of the prede�ned (in Prolog III) predicate freeze. When a constraint(satis�ability of which cannot be determined) is delayed, the computation simply proceeds. The delayedconstraint is awakened when required arguments become instantiated. An example of the use of thedelay mechanism will be given in the next section.Predicate date absolute speci�ed in Prolog III language solves both tasks of conversion (calendardate to and from absolute). In Prolog, there are two more clauses necessary:



% Prolog descriptiondate_absolute(Calendar, Date, Absolute_Date) :-calendar(Calendar), %Calendar is known calendar to the systemnonvar(Date), !, %absolute_from_Calendarabsolute_from_calendar_date(Calendar, Date, Absolute_Date).date_absolute(Calendar, Date, Absolute_Date) :-calendar(Calendar), %Calendar is known calendar to the systemnonvar(Absolute_Date), !, %Calendar_from_absolutecalendar_date_from_absolute(Calendar, Absolute_Date, Date).The example of the predicate date absolute manifests clearly the capability of Prolog III to allowwriting more general solutions than it is possible in Prolog.Conversion between calendarsWith conversion between di�erent calendars, the situation is similar to converting to/from absolutedates. Let us assume that we have speci�ed not only the Gregorian calendar, but also other calendarsin a way similar to the above. More speci�cally, the de�nitions of the predicate date absolute inProlog III, or of the pair of predicates absolute from calendar date and calendar date from absolutein Prolog were augmented by the corresponding sets of clauses such that the �rst parameter in theirheads is a constant denoting the indicated calendar.This is quite natural for both languages and re
ects their declarative style. For comparison, in afunctional style it is more natural to de�ne special functions for each calendar e.g., the pair absolu-te from gregorian and gregorian from absolute would de�ne the Gregorian calendar. Dershowitz et al.[3, 7] have written such pairs of functions in Common Lisp for several recent and historical calendars.To write just two complex functions in Common Lisp and distinguishing several cases according torespective calendars inside them is technically feasible, but it would inevitably lead to functions severalpages long, which contradicts any principle of a good programming style. More importantly perhaps,it would force grouping pieces of code according to a rather secondary criterion rather than groupingall the description of a particular calendar together. Here, it would be another interesting exercise toinvestigate how suitable for this problem would be a combination of an object-oriented paradigm withthe presented declarative approach.To calculate for a given date in a given calendar the corresponding date in another given calendar,we de�ne predicate convert. Because of the required symmetry of the conversion relation, i.e. for givenboth calendars, say Calendar1 and Calendar2, either date for Calendar2 is calculated from givendate for Calendar1, or vice versa, in Prolog we need two clauses to declare the predicate convert:% Prolog descriptionconvert(Calendar1, Calendar2, Date1, Date2) :-nonvar(Date1), !, %Date1 specifiedabsolute_from_calendar_date(Calendar1, Date1, Absolute_Date),calendar_date_from_absolute(Calendar2, Absolute_Date, Date2).convert(Calendar1, Calendar2, Date1, Date2) :-!, nonvar(Date2), %Date2 specifiedabsolute_from_calendar_date(Calendar2, Date2, Absolute_Date),calendar_date_from_absolute(Calendar1, Absolute_Date, Date1).In the Prolog III de�nition of the predicate convert, we use the delay mechanism:% Prolog III descriptionconvert(Calendar1, Calendar2, Date1, Date2) :-delayed_date_absolute(Calendar1, Date1, Absolute_Date),delayed_date_absolute(Calendar2, Date2, Absolute_Date).delayed_date_absolute(Calendar, Date, Absolute_date) :-freeze(Date, date_absolute1(Calendar, Date, Absolute_date)),freeze(Absolute, date_absolute1(Calendar, Date, Absolute_date)).



Predicate delayed date absolute delays calculation of the date for a given calendar until one of the twoterms Date and Absolute date is known.It should be noted that the predicate delayed date absolute can be written in a more e�cient way,so that date absolute is not executed twice:% Prolog III descriptiondelayed_date_absolute(Calendar, Date, Absolute_date) :-freeze(Date, date_absolute1(Calendar, Date, Absolute_date, X)),freeze(Absolute, date_absolute1(Calendar, Date, Absolute_date, X)).delayed_date_absolute1(_, _, _, X) :- known(X), !.delayed_date_absolute1(Calendar, Date, Absolute_date, 1') :-date_absolute(Calendar, Date, Absolute_date).The predicate delayed date absolute1 uses an auxiliary variable X to avoid executing date absolutetwice if Date is known. The �rst clause of delayed date absolute1 will fail since X is not known.Once the absolute date is calculated it will assign 1' to X (i.e., Boolean value true). Subsequent callsto execute delayed date absolute1 will succeed with the �rst clause which does not instantiate anyconstraint. Incorporating other relevant dataIn this section, we give an example which further enhances the capabilities of the presented solutionto the problem of calendrical calculations. We wish to modify the solutions presented so far in such away that they would re
ect more faithfully the actual state of a�airs. For example, let us consider theGregorian calendar. It is a well known fact that the calendar has been adopted only in the sixteenthcentury, and originally only in a very few states. Thus an answer to the question "Which of the twodates: January 4th, 1643 in Italy and December 25th, 1642 in England describes an earlier date ?"is slightly more complicated than it might appear. In this case the �rst date (it is in the Gregoriancalendar) is earlier than the second one (it is in the Julian calendar which was still in use in England:in Gregorian, the date was January 5th, 1643).We show how we represent knowledge on the date when and where a particular calendar wasadopted. This is important when there is a need to relate dates in di�erent localities, such as countriesor, more generally (administrative) districts. Let us describe the above in Prolog. We declare thecalendar adopted by a particular district by means of a predicate current calendar. It de�nes relationamong a particular district, interval of absolute dates and calendar which was adopted during thespeci�ed interval in a given district.current_calendar(italy, [0, 577735], julian).current_calendar(italy, [577736], gregorian).current_calendar(egypt, [227014], islamic(egypt)).current_calendar( ......Interval speci�ed by one element list represents dates from the indicated absolute date up till now.Next we modify the predicate date absolute which converts the date in a given calendar to and fromabsolute date to take into account also a given district. This can be accomplished in Prolog by twoclauses because of the required symmetry with respect to date and absolute date:% Prolog descriptiondate_absolute(District, Date, Absolute_Date) :-nonvar(Absolute_Date), !, %Absolute_Date to Date in a Districtcurrent_calendar(District, Interval, Calendar),is_in_interval(Absolute_Date, Interval),calendar_date_from_absolute(Calendar, Absolute_Date, Date).date_absolute(District, Date, Absolute_Date) :-nonvar(Date), %Date to Absolute_Date in a Districtcurrent_calendar(District, Interval, Calendar),absolute_from_calendar_date(Calendar, Date, Absolute_Date),is_in_interval(Absolute_Date, Interval).



First clause solves the simpler situation: there is given the absolute date. Hence interval for a particulardistrict and absolute date is found by means of the is in interval predicate and the date is calculated.When absolute date is to be calculated for a particular district in Prolog, intervals for a givendistrict are retrieved and absolute date is computed. Then (after calculation) it is tested by a predicateis in interval.In Prolog III, we can declare the same by one clause as follows:% Prolog III descriptiondate_absolute(District, Date, Absolute_Date) :-current_calendar(District, Interval, Calendar),is_in_interval(Absolute_Date, Interval),date_absolute(Calendar, Date, Absolute_Date).The rule constrains the variables �rst and only then the date (or the absolute date) is calculated withrespect to these constraints. ConclusionsWe have shown how a class of calendrical algorithms and data can be represented in a declarativestyle, in two di�erent but related languages. We are convinced that the declarative representationeither in Prolog or in Prolog III is superior to e.g. a procedural one. We support this claim withthe reference to locality dependent features of calendars. Besides the aforementioned intervals ofapplicability of particular calendars in given districts there are other aspects of some calendars thatcannot be expressed algorithmically. As an example, we mention the Islamic calendar, which de�nesbeginnings of (some) months and (some) holidays by proclamation, not by any algorithmic calculation.In order to be able to perform correct calculations, we have suggested to incorporate records of suchevents in the calendar description [1]. This can be done quite naturally in a declarative language.Our presentation provides material for comparisons between Prolog and Prolog III, which has beenour main goal. Although the problem domain is not very typical for constrained relations, and mostof the calculations follow straightforward algorithms, nevertheless we were able to identify relationswhich can be described in Prolog III more simply and naturally than in Prolog. We were able towrite predicates in Prolog III that are more general than the corresponding ones in Prolog. Moreover,due to the fact that part of the relationships among objects can be expressed implicitly by means ofconstraints in Prolog III, whereas in Prolog all of them must be stated explicitly as goals, predicatesin Prolog III tend to be more abstract than those in Prolog.We have suggested to describe the problem domain alternatively also in a language that incorporatesobject-oriented features. There have been several attempts to combine logic programming and object-oriented programming paradigms, e.g. [8]. References1. M. Bielikov�a and P. N�avrat. On declarative presentation of calculations for the Islamic calendar. Technicalreport, Slovak Technical University, Bratislava, 1995.2. A. Colmerauer. An introduction to Prolog III. Technical report, Aix-Marseille II University, Marseille, 1990.3. N. Dershowitz and E.M. Reingold. Calendrical calculations. Software - Practice and Experience, 20(9):899{928, 1990.4. J. Ja�ar and J.-L. Lassez. Constrained logic programming. In 14th ACM Symposium on the Principles ofProgramming Languages, pages 111{119, 1987.5. L. Lamport. On the proof of correctness of a calendar program. CACM, 22(10):554{556, 1979.6. L. Matyska. Constraint logic programming: An overview. In Conf. Proc. SOFSEM'93, pages 133{164, 1993.7. E.M. Reingold, N. Dershowitz, and S. Clamen. Calendrical calculations, II: Three historical calendars.Software - Practice and Experience, 23(4):383{404, 1993.8. D. Xu and G. Zheng. Logical objects with constraints. ACM SIGPLAN Notices, 30(1):5{10, 1995.


