Using XML and Regular Expressions in the
Syntactic Analysis of Inflectional Language*

Marek Trabalka and Maria Bielikova

Slovak University of Technology
Department of Computer Science and Engineering
Ilkovicova 3, 81219 Bratislava, Slovakia
trabalka@dcs.elf.stuba.sk, bielik@elf.stuba.sk

Abstract. In this paper we describe an approach to representation of
data and knowledge using two technologies: XML and regular expres-
sions in a domain of natural language syntactic analysis. Analysis of text
written in natural language requires several lexicons that aid the pro-
cess of syntactic analysis. Moreover knowledge about the language (e.g.,
syntactic rules) should be represented and interpreted. An effective syn-
tactic parser requires effective representation and manipulation of these
data and knowledge. XML and regular expressions allow unified repre-
sentation of static and dynamic aspects of the natural language analysis.
One of the major features of our approach is its extensibility and open
character. We used this representation within our method of syntactic
analysis, which is based on the bottom-up model.

1 Introduction

Syntactic parsing plays an important role in the natural language processing.
It can be used for tasks related to correcting documents and searching relevant
information. The mentioned area of research has growing importance with the
growth of the use of World Wide Web as an environment for sharing information.
Syntactic analysis can be employed for improving search on Internet [3,2]. The
analysis allows, for example, extracting noun phrases of the user request written
in natural language, which can serve for further searching or filtering relevant
information. Analysis of the text can be employed also in the task of classification
of documents.

For the tasks mentioned above an efficient syntactic parser is required. We
deal with the problem of syntactic analysis for inflectional languages, i.e. lan-
guages, where words have usually several different morphological forms that are
created by changing a suffix.

Analysis of text written in the inflectional language requires several lexicons,
which aid the process of syntactic analysis. Syntactic analysis depends heavily

* The work reported here was partially supported by Slovak Science Grant Agency,
grant No. 95/5195/605 and project INCO Copernicus, No. 977069, European Re-
search Network for Intelligent Support of Electromyographic Studies: EMG-Net.

on our knowledge about the language (e.g., knowledge about paradigms and
their forms). An effective syntactic parser requires effective representation and
manipulation of these data and knowledge. An effective implementation of the
natural language syntactic parser requires that we represent these knowledge
and reason effectively about them.

The purpose of this paper is to report on our approach to representation of
data and knowledge using the eXtensible Markup Language (XML) and regular
expressions. Combination of XML and regular expressions provides interesting
and robust features of the application. It enables unified representation of static
and dynamic aspects of the natural language analysis. One of the major features
of this approach is its extensibility and open character. We describe the use of
such representation within our method of syntactic analysis, which is based on
the bottom-up model.

2 Syntactic Parser for Inflectional Language

A syntactic parser can be designed and implemented in a few lines of program (in
languages, which allow effective representation of the parser, e.g. Prolog or Perl).
Unfortunately such ”simple” solutions produce exponential growth of possible
word combinations during the analysis. Problem arises with the efficiency and
then usability of such parser. Most of today’s research and practice in syntactic
parsing is concerned with the English language. The concentration on English has
resulted in advances in solving of its linguistic problems. However parsing text
written in other languages often requires solving different problems. Performance
of the syntactic parsers for the English language is often not satisfactory, in
particular for inflectional languages [12].

We proposed bottom-up syntactic parsing method, which starts with words
in a sentence (the terminals) and attempts to find series of reductions that
yield the sentence. This approach is suitable for inflectional languages (e.g.,
Slavic languages such as the Slovak, Czech, or Russian languages), which are
characteristic by their relatively high degree of word order freedom. Languages
like English have strong word order and the position of the word expresses its
role in the sentence. In that situation, usage of a top-down parser is highly
recommended because of its prediction features. On the other hand the order
of sentence constituents in the inflectional language is not strict and often is
driven more by a human intuition rather than by firmly given rules [8]. Therefore
design of the top-down syntactic parser for the inflectional language requires
consideration of many possible combinations of words in the sentence.

In the inflectional language it is possible to determine role of the word even
at the centre of the sentence when no analysis of the previous words has been
made. We adopted this feature to parse the sentence in an effective way. We
use morphological categories of words and syntactic rules for connecting words
into the phrases to built larger and larger phrases and finally combine them into
the sentence. In our method, words are not processed from left to right (such

Morphological analysis of each word in a sentence

Suffix analysis

I

Paradigm analysis
|
Syntactic analysis of a sentence
1. Create graph representation of the sentence with all
morphological alternatives
2. Combine nodes into phrases by applying syntactic rules
according their priority defined in the knowledge base

3. Continue until there are applicable rules or sentence
was successfully parsed

Fig. 1. Process of a sentence analysis.

as e.g. in [5]), but processing depends on a word’s potential role and priority of
syntactic rules defined in the knowledge base.

Analysis of a sentence is performed at the three levels: phonological, morpho-
logical and syntactical. Phonological analysis is aimed to the sound examination
that is combined to form a language. We consider phonology only at the level
of symbols recognition, which belong to the particular language. Figure 1 illus-
trates the main steps of our method of the sentence analysis, which comprises
morphological and syntactic levels.

At the beginning of the process all possible morphological categories of each
word are found. Our approach to morphological analysis is based on subsequent
refining of partial results. A base form of a word is created and its presence is
checked in the lexicon. Next, the suffix of the word is analysed in order to filter
impossible forms. Finally, all potential paradigms are checked to find match-
ing forms. The result of morphological analysis is often ambiguous. Determined
base form and grammatical categories of matching word constitute a basis for
syntactic parsing.

The principle of the suffix analysis is based on the fact that many words have
typical endings, which determine some of their morphological categories. This
approach is applicable also for checking letters before the actual grammatical
suffix (which is used obviously in the suffix analysis). For example, the suffix
-pcia is in the Slovak language typical for famine nouns in singular nominative.
However, the suffix -a (grammatical suffix of words with the suffix -pcia) is much
more ambiguous. It can determine verb, noun, or adjective in various numbers
cases and genders.

In order to perform suffix analysis we checked a stock of language words and
defined meaningful suffixes into a lexicon. The main advantage of the proposed
approach is that the process of suffix analysis is straightforward and fast. It can
also disambiguate some alternatives in very early stage of the analysis. However,
such analysis can produce more results (possible word categories) because not all
suffixes are unambiguous. This limitation is resolved by including the adaptive
morphological analysis and the syntactic analysis that reduce the number of
possible alternatives.

The method of adaptive morphological analysis [10] automates the process of
binding an unknown word to an appropriate paradigm. It uses knowledge about
paradigms and heuristics to compute an acceptance probability of the form for
the particular word. Input to the method is a word, which is subject to the
morphological analysis (in an arbitrary form). Output presents determination
of the form for the analysed word (a set of morphological tags) with an accep-
tance probability. Output can be ambiguous, i.e. several different forms with
their acceptance probabilities are returned. Alternatives and their acceptance
probabilities are computed by means of linguistic knowledge. Linguistic knowl-
edge is either filled in advance by an expert, or learned by the system during the
previous analysis.

By the use of morphological analysis an initial graph for syntactic analysis
is created. The nodes represent forms of words. Oriented edges connect forms
of neighbouring words. The process of syntactical analysis then creates new
nodes using syntactic rules about connections forms into a phrase. The new
node represents particular phrase. It is connected to all predecessors of the first
node and to all successors of the last node of the phrase was made of.

The parser has to remember the application of each rule on each combination
of nodes. If a node without neither predecessors nor successors is created, parsing
is successful. Such node represents full sentence and parsing trees can be created
by analysing history of the analysis. If there is no such node and no syntactic
rule can be further applicable, parsing was unsuccessful.

Our approach takes advantage of refined processing of the sentence in several
adjoin phases. The analysis exploits the morphological information about par-
ticular suffixes. Suffix analysis often produces ambiguous results although in the
particular context the word has often only one meaningful form. This limitation
is resolved by including the adaptive morphological analysis [10] and the syntac-
tic analysis that starts analysis with the most promising part of the sentence.
The number of possible alternatives is significantly reduced.

3 XML and Regular Expressions Representation

XML is a metamarkup language that allows a document’s structure to be de-
scribed in terms of a hierarchy of named elements with additional properties
expressed as attribute-value pairs. It provides platform for standard infrastruc-
ture in situations where text and other media are to be combined, exchanged
and published [1]. Popularity of XML is strongly influenced by the World Wide

Web development: XML is designed to be used on the Web. This deployment
on the Web opens up many new opportunities for using XML that was never
available with SGML [4].

XML offers great flexibility in data structuring. It is often used as an im-
port/export format or as a universal data exchange format. However XML can
be used also directly within a data processing as an internal format. Compli-
cated internal structures are often used to describe less or more complex entities
and relations between them. We believe that XML can and should be exploited
in many such cases instead internal structures. It will enhance interoperabil-
ity of different systems (software agents in particular) [7]. Undoubtedly, XML
alone does not provide the job itself. We need powerful tools to manipulate data
represented by XML.

We can see the XML document as a tree of nodes with their defined attributes
and values (many existing tools manipulate with the XML document in this
way). Then various functions are designed for the manipulation and query such
a tree and its nodes [6].

On the other hand, we can look and manipulate the XML document as
a string (often long and complicated). Strings are effectively manipulated by
the use of regular expressions. Regular expression is used to search or replace
text fragments specified by a special syntax. The richness and power of regular
expressions is acceptable for most of the XML processing tasks. Such processing

can be effectively and easy expressed in several programming languages (e.g.,
Perl).

3.1 Perl: Comparison of Tree-Parsing Functions and Regular
Expressions Usage

Perl is an efficient programming language for text processing. Perl has built-in
regular expressions support. Together with lot of various libraries, portability
and a free of charge policy, Perl is an effective tool for many text-processing
tasks.

Perl is suitable for the use of combination of regular expressions and the XML.
We used for this task the library XML-Parser aimed to parse and manipulate
XML and the library XML-DOM that provides functions conforming to APT of the
Document Object Model. Various functions of these two libraries allow parsing of
the XML document, selecting specified node (tag), modifying nodes’ attributes,
adding sub-nodes etc.

Simple example bellow shows the way of manipulation with the XML docu-
ments in Perl:

$xml = ’<doci><iteml attri="vall">Hello</item1></docl1>’; #1
$root = $parser->parse($xml); #2
$doc = $root->getElementsByTagName("docl",0)->item(0); #3
$item = $doc->getElementsByTagName("iteml",0)->item(0); #4

print $doc->getAttribute("attri"); #5

The first line defines the XML string. The parser parses this string and returns
root node at the second line. After the successful parse we can manipulate the
XML string, e.g. query child nodes by their name (lines 3 and 4) or work with
the node’s attribute (line 5).

We can also manipulate the XML document by the use of string functions for
regular expressions. The following example matches the tag <item1> preceded
by the tag <doc1> and remembers the value of the attribute attr1l. Everything
matched inside brackets () is automatically stored into special variables $1, $2,
etc. Number after $ sign is determined by the sequence of the opening bracket,
so the contents of the first bracket pair is stored in the $1 variable, contents of
the second brackets will be in variable $2 etc.

$xml =~ m{<doci1><iteml[~>].*attri="(.*?)"};
print $1;

It is clear that in some cases usage of regular expressions can be very efficient
for writing, but it is limited to relatively simple manipulations.

4 Data and Knowledge for Syntactic Parser

We use XML and regular expressions to represent data and knowledge required
for realisation of the method of syntactic analysis described in Section 2. Our
approach to analysis of a sentence is based on subsequent refining of partial re-
sults. During the analysis different data and knowledge are used and subsequent
result (tagged text) travels through defined stages. It would be advantageous to
use a platform independent and extensible format, i.e. XML, for respective text
analysis steps.

Figure 2 illustrates relation between data and particular steps of the syntac-
tic analysis. Suffix analysis belongs to the step of morphological analysis. It is
depicted also within sentence analysis frame, because our method of syntactic
analysis actually does not need a base form of the word. We found out that result
of combination of the suffix analysis and the syntactic analysis is satisfactory for
several applications of the method.

4.1 Static View

It is obvious that we need a large repository of linguistic data and knowledge
to perform parsing and checking a sentence. There are many ways how different
authors solve the storage of these data and knowledge. They often use some self-
defined text formats or database tables (see e.g. how word can be tagged [11]).

We use the XML language to represent all kinds of data and knowledge in
the system. It is well-readable and easy manipulating format for both people and
computers. The following example shows the record for the word in a dictionary,
which represents pronoun ja (I in English):

<PRONOUN case="1" number="sg" gender="m|f|n" person="1">ja</PRONOUN>

Sentence analysis

Paradigm analysis

(Sufﬁx :Lnal;vsis} (Sj;nmct'scal ﬂ.ﬂﬂl}-‘s!ﬂ
» [y

Morphological lexicon || Patterns definition Suffix lexicon Syntactical rules

Word analysis

Fig. 2. Steps of the analysis and required lexicons.

Similarly we define rules for suffix analysis. The rule defines probability of a
word form for its particular ending. The example bellow shows such rules for
suffixes -aca and -iaca):

<NOUN cf="2" animate="y|n" case="2|4" number="sg" gender="m">+aca</NOUN>
<ADJECTIVE cf="2" case="1" number="sg" gender="f">+iaca</ADJECTIVE>

Although XML provides an efficient representation for lexicon definitions there
is also another possibility how to use it within our system. XML can be used as
an internal representation of the current state of the computation process. We
use XML directly during parsing to manipulate already parsed fragments and
replace them with a new one, also written in XML.

The figure 2 illustrates primary data and knowledge necessary to the analysis
of a sentence. In order to achieve good results of the analysis, different statistics
and heuristics should be represented.

For example, to perform an adaptive morphological analysis (mentioned in
Section 2) we represent the statistical information about particular word forms
in the following form: <WORD occ="2" ref="1" sk="1">adresou</WORD> (occ
attribute represents total number of the particular word occurences).

However, for the sake of the efficiency lexicon data should be stored in a
database. Data are extracted from the database (on the fly while being read from
the database) and transformed into the XML document between the successive
steps of the analysis.

4.2 Dynamic View

Regular expressions represent transformations of static structures, their modifi-
cation, matching and manipulation. Matching expressions are used to categorise
or check static elements. In a definition of incorrect words such matching rule
can express non-existent letter combination.

For example, <INCORRECT>m{b [bdfgpqwxz] }</INCORRECT> means that word
where letter b is followed by one of letters b or d or f, etc. is incorrect in the
Slovak language .

More often we use substitution expressions that specify rewriting of the XML
string during the analysis. Substitution expressions are used to express syntactic
rules of the analysed language. Substitution expressions are stored inside a tag
RULE. The rule consists of the two parts:

<RULE> s{left-hand-side}{right-hand side} </RULE>

Left-hand side of the rule determines text to be substituted. Right-hand side
specifies the text used for a substitution. The following example rule specifies the
combination of attribute and noun phrase with the same grammatical categories
into one phrase:

<RULE cf="8.5">
s{ <ATTRIBUTE (animate="\w*") (case="\d*") (number="\w*")
(gender="\wx")>(\r*) </ATTRIBUTE>
<NOUNPHRASE \1 \2 \3 \4 (person="\dx")
(compoundnumber="\wx")>(\r*)</NOUNPHRASE> }
{ <NOUNPHRASE $1 $2 $3 $4 $6 $7>$5 $8</NOUNPHRASE> Im
</RULE>

Rules are exploited on all levels of the analysis. On the morphological level, rules
are used for paradigm specification. In this case the rule specifies transformations
between various forms of a word. On the syntactical level, rules describe trans-
formation of morphological categories of words and into phrases and phrases into
a sentence.

4.3 Co-operation of the Static and Dynamic views

In order to provide useful results of syntactic analysis, the system should stick
static and dynamic point of view together. Static structures represent necessary
framework for information needed for parsing and also define status of the pars-
ing process and different alternatives. On the other hand, regular expressions
are used for representation of a dynamic behaviour of the system, i.e. how status
structures are changing. The appendix demonstrates example of parsing phrase
"mald cesta” (”small road” in English).

5 Conclusions

In the paper we describe our approach to syntactical analysis realisation by the
use of XML and regular expressions. The main advantage of described approach
is platform independence and extensibility. XML is used as a means for specify-
ing data and knowledge needed for performing particular steps of the sentence
analysis.

Our approach provides space for defining specific vocabulary for natural lan-
guage analysis similarly to existing standards aimed to different application do-
mains (e.g., MathML, a markup language for mathematical equations and for-
mulae, GedML for marking up genealogical data, RDF (Resource Description

Format) describing a standard for representing information about web resources,
etc.). We started this work by defining DTD’s for data and knowledge needed
for morphological and syntactical analysis.

We developed software tools to validate described approach. Two programs,
CheckText and VisualCheck perform grammar checking of the Slovak language.
The first one receives text for checking and returns the XML document, which
represents a parsing tree of correct sentences and incorrect words or sentences.
VisualCheck is the simple GUI program for interactive usage. It allows a user
to write down some sentences and invoke the grammar checker. Then program
highlights errors and suggests corrections to the user.

Important part of our system is an agent-based subsystem used for automatic
intelligent expansion of system’s morphological lexicon. It is based on a central
synchronisation server and group of independent agents that browse Internet
web pages and collect various forms of Slovak words. They exchange collected
information through the central server. Such agents can be a part of grammar
checker on the user’s machine and can perform self-improvement of the sentence
analysis as the background process [10].

One of the most interesting areas of usage of natural language analysis is
an intelligent database interface. Such interfaces allow users to query database
using commands and queries written in natural language and bring the power of
querying to the wider range of users. In fact, natural language interface should
not be limited to databases only, it is useful in almost any information system.

Also searching in texts written in other languages than English often requires
additional pre-processing based on the linguistic knowledge. Various word forms
in inflectional languages make it hard to find in texts all forms of a word. As a
result a user often receives only a small portion of appropriate results. Another
promising application for natural language analysis is information filtering. Our
realisation based on XML enables to incorporate content based filtering into the
existing collaborative filtering approaches [9].

Proper use of linguistic knowledge and tools in information systems can pro-
vide easier user interface and interesting new functionality. The use of XML with
regular expressions brings many advantages including simplicity, platform and
application independence and extensibility.

References

1. Bradley. N. The XML companion. Addison Wesley, Harlow, England, 1998.

2. Clark, D. Natural language relevancy ranking, and common sense. IEEFE Intelligent
Systems, July/August 1999, 17-19.

3. Cowie, J., Lehnert, W. Information Extraction. Communications of the ACM, Vol.
39, No. 1, 80-91, January 1996.

4. Garshol, L.M. What can we do with XML? White paper, Infotek A/S, paper pre-
sented at the SGML/XML Finland "98 conference in Jyviskyld and at SGML User
Group meeting in Oslo, 1999. Available also at
hitp : [/ /www.stud.i fi.uio.no/~ lmariusg/download/artikler / finsgmle8.html.

. Hausser, R. Newcat: Parsing Natural Language using Left-Associative Grammar.
Berlin, Springer-Verlag, 1986.

. Laforest, F., Tchounikine, A. A Model for Querying Annotated Documents. In Proc.
of Advances in Databases and Information Systems, ADBIS’99, J. Eder et. al. (Eds.),
Springer Verlag, LNCS 1691, pp. 61-74, 1999.

. Leskovar, R.T., Gyorkos, J. Interoperability in an Agent-based Workflow System. In
Proc. of Short Papers Advances in Databases and Information Systems, ADBIS’99,
J. Eder, I. Rozman, T. Welzer (Eds.), pp. 88-94, 1999.

. Smrz, P., Hordk, A. Implementation of Efficient and Portable Parser for Czech. In
Proc. of the Second Int. Workshop, TSD’99, V. Matousek et. al. (Eds.), Springer
Verlag, LNAI 1692, pp. 105-108, 1999.

. Poléicova, G. Recommending HTML-documents using Feature Guided Automated
Collaborative Filtering. In Proceedings of Short Papers Advances in Databases and
Information Systems, ADBIS’99, J. Eder et. al. (Eds.), pp. 81-87, 1999.

10. Trabalka, M., Bielikova, M. Performing Adaptive Morphological Analysis Using

Internet Resources. In Proc. of Text, Speech and Dialog, TSD’99, V. Matousek et.
al. (Eds.), Springer Verlag, LNAI 1692, pp. 66-71, 1999.

11. Nenadic, G., Vitas, D. Using Local Grammars for Agreement Modeling in Highly

Inflective Languages. In Proc. of Text, Speech and Dialog, TSD’98, P. Sojka et. al.

(Eds.), Masaryk University Press, pp.91-96, 1998.
12. Péles, E. Sapfo. Paraphraser of Slovak Language. Bratislava, 1993. (In Slovak)

Appendix: Example of Parsing

Input: <TEXT>mald cesta</TEXT>

Output of morphological analysis:

<ADJECTIVE animate="" case="1" number="sg" gender="f">mala</ADJECTIVE>
<NOUN animate="" case="1" number="sg" gender="f">cesta</NOUN>

Output of 1st syntactic analysis step:

<ATTRIBUTE animate="" case="1" number="sg" gender="f">mala</ATTRIBUTE>
Used rule:
<RULE cf="10">
s{<ADJECTIVE (animate="\wx") (case="\dx*") (number="\wx")
(gender="\w*")>(\r*)</ADJECTIVE> }
{<ATTRIBUTE $1 $2 $3 $4>$5</ATTRIBUTE> }m
</RULE>

Output of 2nd syntactic analysis step:

<NOUNPHRASE animate="" case="1" number="sg" gender="f" person="3">
mala cesta</NOUNPHRASE>
Used rule:
<RULE cf="8.5">
s{<ATTRIBUTE (animate="\w*") (case="\dx") (number="\wx")
(gender="\wx")>(\rx)</ATTRIBUTE>
<NOUN \1 \2 \3 \4>(\r*)</NOUN> }
{<NOUNPHRASE $1 $2 $3 $4 person="3">$5 $6</NOUNPHRASE> }m
</RULE>

