
Learning Programming with Adaptive Web-Based Hypermedia System AHA!

Mária Bieliková, Jaroslav Kuruc and Anton Andrejko
Institute of Informatics and Software Engineering

Faculty of Informatics and Information Technologies, Slovak University of Technology
Ilkovičova 3, 842 16 Bratislava, Slovakia

{andrejko,bielik,kuruc}@fiit.stuba.sk

Abstract

In this paper we describe an application of open
source adaptive hypermedia system called AHA! for
learning programming. We present models for adaptive
hypermedia systems targeted at the AHA! architecture.
Our approach to learning programming is based on
adaptive presentation of program examples that serve as
program exercises related to particular programming
language and programming paradigm. Each program
exercise in the domain model is defined as a concept
consisting of three basic parts: definition, hint and
solution. The domain model also defines several relations
typical for educational systems such as a prerequisite
together with relations specific to domain of learning
programming, e.g., the relation linking a program
exercise and a program schema that generalizes the
program exercise. Proposed relations allow effective
adaptation on several levels of abstraction. We also
present extensions devised for purpose of accommodating
specific features related to the application domain, such
as considering time for adaptation, refined granularity of
the concept suitability, or accommodating students’ view
of understanding particular concept while learning.

1. Introduction

Learning programming requires not only well prepared
textbooks (currently often presented using web-based
teaching/learning environments) but also a lot of practi-
cing in order to develop a programming skill. For the
practice, an idea of using program examples and provide
students with solutions to problems is advisable approach
taken by several learning systems [9, 3].

Our approach to learning programming is based on
developing a programming skill that can only be learned
through practice. Program examples that serve as program
exercises related to particular programming language are
presented to the student together with appropriate guide-
line for navigation within the space of program exercises.
We further improve learning by considering goals and
knowledge level together with a context of learning for
each student individually. We identified time as an impor-

tant context attribute in this environment. Taking the time
into account can indicate for example that a program
exercise is strongly recommended in particular week of
semester, or a sequence of exercises recommended for
particular student can be influenced by his time available
or planned for learning.

Nowadays several web-based adaptive educational
hypermedia systems that enhance e-learning by the
effective personalized content presentation or navigation
exist. Such systems build a model of goals, preferences
and knowledge of each individual student, and use this
model throughout the interaction with the student, in
order to adapt to the needs of that student [2, 5].

In this paper we present models necessary for adaptive
hypermedia systems aimed at support of learning
programming by providing program exercises. Models
are developed within the framework of Adaptive
Hypermedia Architecture and realized by the general
purpose adaptive system AHA! [7]. Adaptation mecha-
nisms are employed for personalization of navigation
within an information space of program exercises. In such
a way the educational system guides a student during
learning programming. This work is based on our
previous experiences with design, development and usage
of adaptive web-based educational system ALEA, which
serves for purposes of learning programming in the
Functional and logic programming course at the Slovak
University of Technology in Bratislava since academic
year 2002/2003 [8].

The rest of the paper is as follows. In Section 2 we
describe the AHA! system concepts. We concentrate on
issues related to proposed models. Next, we present
structure of the domain model for learning programming.
In Section 4 we describe proposed extensions considering
time. Section 5 discusses learning approaches and support
of models for their realization. The paper concludes with
summary and future directions for this research.

2. AHA! Concepts

AHA! is an open source general-purpose adaptive
hypermedia system developed and maintained at the
Eindhoven University of Technology [7]. Currently the
AHA! 3.0 prerelease is available on the AHA! web site

(http://aha.win.tue.nl/). AHA! exploits a model
of a user characteristics such as goals, preferences,
learning style etc. for adaptive content presentation and
navigation. It uses combined domain/adaptation model
related to the user model through defined concepts in the
overlay user model.

Domain model consists of concepts and their
relationships [6]. Every information fragment presented
to a user as the web page is related to the corresponding
concept. Concepts are arranged in a hierarchy and can be
shared among several information fragments.

The definition of a concept in the AHA! domain model
includes above all name, resource (reference to the
corresponding information fragment (page) in the infor-
mation space) and several predefined attributes:

• access – the attribute serves the purpose of
starting the adaptation engine when the concept
resource is accessed;

• suitability – the attribute is used for expressing
whether the page assigned to the concept is
suitable for presentation (it serves for decision
about the style of the link to the resource presen-
tation annotation);

• knowledge – the attribute stores an integer value
which corresponds to the user’s level of know-
ledge of particular concept;

• visited – the attribute stores information whether
the user visited the resource of the concept or not.

Except above mentioned (predefined) attributes, user
defined attributes are allowed.

Concepts can be connected to each other through
concept relationships defined in the form of adaptation
rules. They can be predefined using templates that
represent relationship types. The prerequisite, knowledge
propagation and knowledge update are examples of
AHA! (predefined) relationship types:

• prerequisite relationship is typical for educational
hypermedia. It serves for defining appropriate
sequences of concepts for effective learning, i.e.
the user is advised to visit particular concept only
if its prerequisites have been visited;

• knowledge propagation relationship serves for
automatic propagating knowledge from lower
levels to the concepts that are at the higher level
according the concept hierarchy;

• knowledge update relationship is a unary relation-
ship defined for every page. When the page is read
and its suitability attribute is true then the
knowledge of the page is set to the value of 100
(representing situation where the concept is
understood).

The adaptation model consists of event-condition-
action rules. It is responsible for performing adaptation
based on the knowledge represented in the adaptation

model (an update of the user model and consecutive
influence of the presentation or navigation according the
updated user model). Frequently used event defines
situations when the user accesses the page. The condition
is expressed as a Boolean expression using attributes of
concepts, and the action consists of one or more assign-
ments of values or expressions to attributes of concepts.

AHA! uses an overlay user model. Every concept in
the domain model is defined also in the user model. The
value of each attribute for particular user is stored in the
user model. The attribute can be defined as persistent, i.e.
its value is stored between several sessions. Except
domain model concepts, additional concepts can be
defined in the user model. For instance, the concept
personal is stored only in the user model and stores
values of attributes such as the login or password.

The definition of the attribute in the domain model
includes also event-condition-action rules affecting the
way the values of the attributes in the user model are
updated. When the event occurs (e.g., a page is shown),
rules associated with the built-in access attribute are
triggered. If the condition associated with the rule is
fulfilled, a set of defined actions is fired. Action defines
which attribute will be changed together with its new
value. The rules can also recursively trigger another rules.
By this way, the user model is maintained during the
work with the AHA! system.

3. Structure of domain model for learning

programming

AHA! system offers two software tools supporting
definition of a domain model/adaptation model [6]. Graph
Author is a high-level tool for defining conceptual
structure using predefined templates of concepts and
concept relationships by the graph-based approach.
Concept Editor is lower level tool which allows editing
native XML representation of the domain and adaptation
models using form-based user interface.

The knowledge, which is the aim of the learning, is
usually expressed using a text composed in a textbook.
Textbook is logically divided into smaller parts –
chapters. To make learning more effective, the learning
material often contains also supporting tasks and tests, so
the student is able to examine newly acquired knowledge.
The structure of the textbook is shown in Figure 1. In our
implementation of the AHA! models we do not consider
tests, external system for testing is supposed.

Learning material (knowledge grouped in a hierarchy
of chapters that form the textbook) in a university course
is presented during defined period (semester) in several
lectures. The most frequent case is to provide students
with one lecture per week, but it may vary. The relation
between the lecture and the timetable of the university
course is shown in Figure 2. Every week of semester can

have associated one or more lectures. Each lecture is
related to the knowledge concept from Figure 1.

Lecture Week of
semester

provided

Fig. 2. The relation between the lecture and

timetable of course.

To support domain modeling for learning program-
ming, we defined several new templates for concepts,
concept fragments and concept relationships for the
Graph Author tool. We mention here four basic types of
concepts:

• chapter – represents consistent logic unit of the
learning material, integrates other types of
concepts;

• text – represents information fragment (page)
containing explanatory text (related to program
exercises) that corresponds to the text in a
textbook or other learning material;

• program exercise – represents an exercise related
to the given concept in the field of programming
(e.g., programming technique);

• program schema – represents generalization of
solutions of a group of program examples that is
related to particular programming technique.

Since personalization of the learning environment is
advisable according to the student’s knowledge and
ability to solve problems, the information fragment
representing a program exercise is divided to several
parts. Every part is assigned to the concept fragment and
can be presented in various ways to the student (e.g.,
using annotations or hiding fragments). We define three
types of the program exercise concept fragments [8]:

• specification – an information fragment where the
specification of given problem is presented;

• hint – an information fragment where a hint to the
solution for the student is given;

• solution – an information fragment where the
solution to given specification is presented, usually
associated with annotated the source code.

Proposed structure of the learning material in the field
of learning programming is shown in Figure 3.

Definition

Hint

Programming
concept

Program
schema

explained

Program
exercise

exercised
<<include>>

<<include>>

Solution

<<include>>

Source code
defines

Fig. 3. The structure of the learning material

in the field of programming.

According to the level of knowledge of particular
student, some of the fragments are not shown. For
beginners, a hint would be helpful, whereas for students
with advanced programming skills this information may
be redundant.

For efficient adaptation it is necessary properly
estimate the student knowledge level related to particular
concept representing knowledge. Estimating the student
knowledge level is a complex task. It is usually performed
using various on-line tests. To improve reflection of the
student’s knowledge of the domain in the user model, we
proposed an extension to the standard knowledge update
mechanism.

Our solution is to support feedback mechanism from
the student, so she is able to “tell” the system, whether
she understands presented information. In AHA!
appropriate way to achieve this is to extend every concept
with the user changeable attribute, in our case attribute
called understood, with an initial value false [10].

Realization of described approach requires extending
the user interface with a button (or other kind of the form
element) to provide a student with the feedback
mechanism. Corresponding knowledge update mecha-
nism is as follows:

• if the visited concept is suitable, but not
understood by the student, the value of the
knowledge attribute is set to definite value in the
range 0-100 (we have used in the first prototype

Chapter

Task

Test
<<external>>

Knowledge

contains
reviewed

tested

Educational
text

expressed

Fig. 1. The structure of the textbook.

the value of 65, which corresponds to common
understanding of suitability in the AHA! system),

• if the visited concept is suitable and understood,
the value of the knowledge attribute becomes the
highest possible (100).

The understood attribute definition in AHA! is as
follows:
<attribute>
 <name>understood</name>
 <desc>Have you understood this
 page?</desc>
 <default>false</default>
 <type>boolean</type>
 <isPersistent>true</isPersistent>
 <isChangable>true</isChangable>
</attribute>

To support decisions related to suitability of the
concept resource being presented to the particular student
in given context, we extended the suitability attribute.
Predefined suitability attribute is Boolean type. We
extended it to integer, which allows having several levels
of suitability.

4. Considering time

Educational courses are usually provided in particular
time period, which is divided into smaller parts. For
university study typical period for the course is semester
divided into the number of weeks. In this environment,
time-based adaptation of the information related to the

study is effective [1]. Current version of the AHA!
system does not support notion of time implicitly. There
does not exist any mechanism for considering time during
adaptation.

We proposed a solution in the form of adding a new
attribute called timepos to the user model representing the
student’s actual position in the course timetable. The
value of the attribute could be interpreted relatively (e.g.,
the week of the semester), or absolutely (e.g., actual date).
In the first case, a manual update of this attribute by the
user is possible. Thus, the student is able to select study
advancement as needed. In the second case, automatic
update by a background process is defined.

To affect the presentation considering time, mapping
of the relevant timetable position to the concepts in the
domain model is required. This information could affect
user’s goals and concepts suitability, where combination
of actual timetable position relative to the desired
timetable position assigned to the concept and concept
knowledge may estimate the suitability of the concept.
Presented approach to considering time is somehow
limited. We plan extend it by possibility of assigning
more timetable positions and by using time intervals for
expressing suitability of the concepts according time.

To support modeling a concept suitability in
dependence on time, we have modified prerequisite
concept relationship template for the Graph Author tool
as shown in Figure 4.

The prerequisite relationship defines the suitability
attribute update. When the page associated with the

<aha_relation_type>
 <name>prerequisite</name>
 <listitems>
 <setdefault location="destination.suitability" combination="AND">
 source.knowledge > var:50 &&
 destination.timepos == personal.actual_timepos
 </setdefault>

 <generateListItem isPropagating="true" location="source.access">
 <requirement>destination.timepos == personal.actual_timepos</requirement>
 <trueActions>
 <action>
 <conceptName>destination</conceptName>
 <attributeName>suitability_ex</attributeName>
 <expression>source.knowledge + var: 50</expression>
 </action>
 </trueActions>

 <falseActions>
 <action>
 <conceptName>destination</conceptName>
 <attributeName>suitability_ex</attributeName>
 <expression>source.knowledge</expression>
 </action>
 </falseActions>
 </generateListItem>
 </listitems>
</aha_relation_type>

Fig. 4. Definition of the prerequisite relation.

source concept of the relationship is accessed, the
suitability attribute value of destination concept of the
relationship is set to a given value. When the concept
suitable time position is equal to the time position in the
user model, the value is updated to the value of the source
concept knowledge increased by definite value (we have
used in correspondence of usual interpretation of suita-
bility in AHA! the value of 50). When the concept
suitable time position and the time position from user
model are not equal, the value is set as the source concept
knowledge attribute value. Thus, in case of time match,
the destination concept is considered as more suitable.

5. Learning approaches

Considering learning approach in the field of learning
programming is important issue. We provide a
mechanism for selecting desired learning approach that is
based on similar principle as the time-based extension
presented in the previous section. The user model is
extended by the attribute representing desired learning
approach. This attribute should be changeable by the user
and should affect suitability of the concepts. The concepts
related to the desired learning approach are preferred.
Regarding to the concept types for learning origramming
presented in the Section 2, when the approach “from
general to concrete” is selected, the program schema
concepts are preferred against the program exercise
concepts. When the approach “from concrete to general”,
opposite preference is applied.

An example of using learning strategy for adaptation
of links in the resource regarding the suitability of the
concept associated with the destination page is shown in
Figure 5. When a link is marked as conditional, it is
annotated considering the suitability of the concept
related to the destination page. In our example, the link to
the recursion.xhtml page will be apparently annotated
as suitable, as the presented pattern uses recursion
mechanism.

The example also shows the conditional inclusion of
fragments. When the “from general to concrete” learning
approach is desired, a link to the particular program
schema is generated. Following the link, information
fragment including schema is showed.
<h1>Top-level list mapping schema</h1>
<pre>
 (defun <mapping> (list)
 (cond
 ((null list) NIL)
 (T (cons
 (<transf-function> (first list))
 (<mapping> (rest list))))))
</pre>

In case of “from concrete to general” learning
approach, a link to the example is generated.
<h1>Top-level list mapping example</h1>
<p>Numbers in list get squared.
 (1 2 3) -> (1 4 9)</p>
<pre>
 (defun map-square (list)
 (cond
 ((null list) NIL)
 (T (cons
 (* (first list) (first list))
 (map-square (rest list))))))
</pre>

Described mechanism allows adaptation based on
considering cognitive style of learning related to the
domain of programming. The adaptive educational
systems leads the student over different paths through the
information base. We distinguish that some students
prefer first to see an explanatory text related to a concept
they are learning, then a generalization of the learned
programming concept (given by a program schema in our
approach [8]) and finally to practice programming by
solving exercises. Another group of students prefers go
straight to solve the programming tasks immediately after
seeing the explanatory text (if even), then look at the
corresponding program schemata and compare solutions
with presented generalizations.

<h1>Top-level list mapping</h1>
<p>The top-level list mapping program schema maps items according
 specified function ...</p>
<p>Back to the description
 of recursion.</p>

<if expr="personal.learning_approach == 'top-down'">
 <block>
 <p>Look at the schema.</p>
 </block>
</if>

<if expr="personal.learning_approach == "'bottom-up'">
 <block>
 <p>Look at the example. </p>
 </block>
</if>

Fig. 5. Information fragment with conditional links.

6. Conclusions

In this paper we presented models for the open source
adaptive hypermedia system AHA! aimed at learning
programming. Our approach is based on adaptive
presentation of program examples, which serve as
program exercises related to particular programming
language and programming paradigm together with
program schemata, which serve as generalizations of
learned programming concepts.

The main contribution of this paper is in defining the
domain model for learning programming. Each program
exercise is specified as a concept consisting of three parts:
definition, hint and solution. The domain model includes
several relations typical for educational systems such as a
prerequisite, but also domain specific relations such as the
relation linking a program exercise and a program schema
generalizing the exercise. Defined relations allow
effective adaptation on several levels of abstraction
(based on defined hierarchy of concepts or using different
learning strategies such as from general to concrete, or
from concrete to general by means of program schemata).
We also presented several extensions to the AHA! system
that are suitable not only for domain of learning
programming. All extensions are incorporated into open
source adaptive hypermedia system AHA!, version 3.0.
Learning environment can be further improved by
incorporating annotations to the program exercises that
serve as program examples [4].

Our future work will focus on experimental evaluation
of the proposed models, which includes also adjusting
constants that occur in definitions of relations, for
example increase of the suitability attribute in case of
recognizing the concept comprehension.

Acknowledgements

This work has been supported by the Scientific Grant
Agency of Slovak Republic grant No. VG1/ 0162/03 and
the Cultural and Educational Grant Agency of Slovak
Republic grant No. KEGA 3/2069/04.

References

[1] Bieliková, M., R. Habala, “University Course Support
by Web-Based Adaptive e-Board”, In Proc. of ICETA
2004, F. Jakab, L. Samuelis, I. Sivý, M. Bučko (Eds.),
Košice, Slovakia, September 2004, pp. 395-402.

[2] Brusilovsky, P., “Methods and techniques of adaptive
hypermedia”, User Modeling and User-Adapted
Interaction, Vol. 6, No. 2-3, pp. 87-129, 1996.

[3] Brusilovsky, P., “WebEx: Learning from examples in
a programming course”, In Proc. of WebNet'2001, World
Conf. of the WWW and Internet, W. Fowler, J. Hasebrook
(Eds.), Orlando, FL, USA, AACE, October 2001,
pp. 124-129.

[4] Brusilovsky, P., M. Yudelson, S. Sosnovsky, “An
adaptive E-learning service for accessing Interactive
examples”, In: Proc. of World Conf. on E-Learning –
E-Learn 2004, J. Nall, R. Robson (Eds.), Washington,
DC, USA, November 2004, AACE, pp. 2556-2561.

[5] Bureš, M., I. Jelínek, “Description of the Adaptive
Web System for E-learning“, In Proc. of the IADIS Int.
Conf. e-Society 2004, Lisboa: IADIS Press, July 2004,
vol. 2, pp. 988-991.

[6] De Bra, P., N. Stash, D. Smits, “Creating Adaptive
Applications with AHA!”, Tutorial for AHA! version 3.0.
In AH 2004 Tutorials, L. Aroyo and C. Tasso (Eds.),
Eindhoven, The Netherlands, August 2004, pp. 1-29.
Available at: http://aha.win.tue.nl/aha3-tutorial.pdf

[7] De Bra P., A. Aerts, B. Berden, B. De Lange,
B. Rousseau, T. Santic, S. Smits, N. Stash, “AHA!
The adaptive hypermedia architecture”, In Proc. of the
ACM Conf. on Hypertext and Hypermedia, Nottingham,
UK, August 2003, pp.81-84.

[8] Kostelník, R., M. Bieliková, “Web-Based Environ-
ment using Adapted Sequences of Programming
Exercises”, In Proc. of Int. Conf. on Information Systems
Implementation and Modelling – ISIM 2003, M. Beneš
(Ed.). Brno, Czech Republic, April 2003, pp. 33-40.

[9] Redmiles, D. F., “Reducing the variability of
programmers’ performance through explained examples”,
In Proc. of INTERCHI’93 – Conf. on Human Factors in
Computing Systems, Amsterdam, The Netherlands, April
1993, ACM, pp. 67-73.

[10] Szöcs, V., “Adaptive hypermedia for teaching
programming”, Final Bachelor theses supervised by
M. Bieliková, Slovak University of Technology in
Bratislava, 2005.

