© The e o enable 3 chet e prades

[e ——
earcarmaly dplayt

B 0 i the s

5 Trepsiers st oo
. Thr rrorers o b chere m carce a1
B e T e ——

e prn e k] rew b et

You have to create a system based on a list of
requirements.

What do you find as positive in this (helping you),
and what as negative (bothers you)?

Whar rypical interactions
with the system

—use cases —

could you identify in an
e-shop?

{2
A = E e

A Cockbarn. Writing Effective Use Cases. Addison-Wesley, 2000,

Which one of the use cases
identified in an e-shop would
you realize as the first one? Writing the rypical
interactions with the 5!"51E'I'ﬂ
being creared - the nse cases
- enables ro uncover the real
intent of the client and 1o
express it comprehensibly,
and yer close to code

Use case modularization
helps in coping with
their complexity

(just the include
relationship for now}

» Dot e e s s s g
1 Pl i O a e ik

e pickaproadacts
e thecar. Thes e i

+pomn i e, which e ——

g il crcatuaaly e, v e e e b,
[——rT—
J——

SR fiit.sk/~vranic/msoft/dot

peblic chass Cedesing 1
ST W P ——
ew Scarch Prodiscrs G producey
i {pena i prosdinen <= quasing 1

fe

Lecture1:

Use Cases

Valentino Vranié

Ustav informatiky, informac¢nych systémov
a softvérového inZinierstva

vranic@stuba.sk fiit.sk/~vranic

MSOFT 2019/20
24.9.2019

1. The system must enable a client to search products.

2. The system must enable a client to set the number of
concurrntly displayed items.

3. The system must enable a client to order products.
4. The system must enable a client to cancel an order.
99. The system must enable to dispatch an order.

125. It must be possible to add new kinds of products to
the system.

1. The system must enable a client to search products.

2. The system must enable a client to set the number of
concurrntly displayed items.

3. The system must enable a client to order products.
4. The system must enable a client to cancel an order.
99. The system must enable to dispatch an order.

125. It must be possible to add new kinds of products to
the system.

You have to create a system based on a list of
requirements.

What do you find as positive in this (helping you),
and what as negative (bothers you)?

What typical interactions
with the system

— use cases —

could you identify in an
e-shop?

overall project N,

.) o

/\ Summary -
: . white
Y Goals

| User |AAblue,

Al Setup i\ reference ||
Goals

promotion || promotion

identify register (M| 1dentify identify Subfunctions
promotion user product customer

A. Cockburn. Writing Effective Use Cases. Addison-Wesley, 2000.

Which one of the use cases
1dentified in an e-shop would
you realize as the first one?

UC Place an Order

A customer picks products
into the cart. These become
a part of their order, which
they will eventually confirm,
by which the order will move
to dispatching.

UC Place an Order

1. Customer selects to place an order.

2. System displays the search options.

3. Customer sets the search options and runs searching.

4. System displays the items that have been found.

5. Customer chooses among the items and confirms the choice.

6. System puts the selected items into the cart.

7. Customer can continue in selecting products — the use case continues with
step 2.

8. Customer orders the products in the cart.

9. System requests the data necessary to place the order including the
payment method.

10. Customer provides the necessary data.

11. Customer can give up the processes of product ordering at any time.

12. System records the order in a list of orders to be dispatched.

13. For each product in the order, System checks the available quantity.

14. If the quantity is below the limit, System adds the quantity under demand
to the restock plan.

15. The use case ends.

Preconditions: Customer is logged on

Postconditions:
« Minimal: products that have been a part of the order remain there
« Success: products ordered by Customer is a part of the order

Writing the typical
interactions with the system
being created — the use cases
— enables to uncover the real
intent of the client and to
express it comprehensibly,
and yet close to code

UC Place an Order

1. Customer selects to place an order.

2. System displays the search options.

3. Customer sets the search options and runs searching.

4. System displays the items that have been found.

5. Customer chooses among the items and confirms the choice.

6. System puts the selected items into the cart.

7. Customer can continue in selecting products — the use case continues with
step 2.

8. Customer orders the products in the cart.

9. System requests the data necessary to place the order including the
payment method.

10. Customer provides the necessary data.

11. Customer can give up the processes of product ordering at any time.

12. System records the order in a list of orders to be dispatched.

13. For each product in the order, System checks the available quantity.

14. If the quantity is below the limit, System adds the quantity under demand
to the restock plan.

15. The use case ends.

Preconditions: Customer is logged on

Postconditions:
« Minimal: products that have been a part of the order remain there
« Success: products ordered by Customer is a part of the order

UC Place an Order
Basic Flow: Place an Order

1. Customer selects to place an order.

2. The Search Products auxiliary flow is activated.

3. System puts the selected products into the cart.

4. Customer can continue in selecting products — the use case continues with
step 2.

5. Customer orders the products in the cart.

6. System requests the data necessary to place the order including the
payment method.

7. Customer provides the necessary data.

8. Customer can give up the processes of product ordering at any time.

9. System records the order in a list of orders to be dispatched.

10. If after dispatching the order the quantity of any product would fall below
the prescribed limit, System adds a record about the need to increase the
quantity of the corresponding product to the restock plan.

11. The use case ends.

UC Place an Order
Basic Flow: Place an Order

1. Customer selects to place an order.

2. The Search Products auxiliary flow is activated.

3. System puts the selected products into the cart.

4. Customer can continue in selecting products — the use case continues with
step 2.

5. Customer orders the products in the cart.

6. System requests the data necessary to place the order including the
payment method.

7. Customer provides the necessary data.

8. Customer can give up the processes of product ordering at any time.

9. System records the order in a list of orders to be dispatched.

10. If after dispatching the order the quantity of any product would fall below
the prescribed limit, System adds a record about the need to increase the
quantity of the corresponding product to the restock plan.

11. The use case ends.

Auxiliary Flow: Search Products
1. System displays the search options.

2. Customer sets the search options and runs searching.
3. System displays the items that have been found.

Auxiliary Flow: Search Products

1. System displays the search options.
2. Customer sets the search options and runs searching.
3. System displays the items that have been found.

Use case modularization
helps in coping with
their complexity

(Just the include
relationship for now)

Writing the typical
interactions with the system

being created — the use cases Use case modularization

—enables to uncover the real helps in coping with
intent of the client and to their complexity

express it comprehensibly, (Just the include
and yet close to code relationship for now)

fiit.sk/~vranic/msoft/dot

UC Place an Order
Basic Flow: Place an Order

1. Customer selects to place an order.

2. UC Search Products, its Search Products auxiliary flow, is activated.

3. System puts the selected products into the cart.

4. Customer can continue in selecting products — the use case continues with
step 2.

5. Customer orders the products in the cart.

6. System requests the data necessary to place the order including the
payment method.

7. Customer provides the necessary data.

8. Customer can give up the processes of product ordering at any time.

9. System records the order in a list of orders to be dispatched.

10. If after dispatching the order the quantity of any product would fall below
the prescribed limit, System adds a record about the need to increase the
quantity of the corresponding product to the restock plan.

11. The use case ends.

UC Search Products
Auxiliary Flow: Search Products
1. System displays the search options.

2. Customer sets the search options and runs searching.
3. System displays the items that have been found.

Jacobson

UC Place an Order
Basic Flow: Place an Order

1. Customer selects to place an order.

2. UC Search Products, its Search Products auxiliary flow, is activated.

3. System puts the selected products into the cart.

4. Customer can continue in selecting products - the use case continues with
step 2.

5. Customer orders the products in the cart.

6. System requests the data necessary to place the order including the
payment method.

7. Customer provides the necessary data.

8. Customer can give up the processes of product ordering at any time.

9. System records the order in a list of orders to be dispatched.

10. If after dispatching the order the quantity of any product would fall below
the prescribed limit, System adds a record about the need to increase the
quantity of the corresponding product to the restock plan.

11. The use case ends.

UC Search Products
Auxiliary Flow: Search Products
1. System displays the search options.

2. Customer sets the search options and runs searching.
3. System displays the items that have been found.

Jacobson

public class Ordering {

public void order(Product product, int quantity) {

new SearchProducts().find(product);

if (getQuantity(product) >= quantity) {

} else...

