Canemerd
berrned o
trchudde and vice

veraal

Ts everything in order witl

UL Search Product?
Whoiz actally an e-ghap oustames?

it

ra——ry

omin

[T
)

Can 2 merchant be 2 cuscomer?

Py et e
e

Vacage e g eariy

mcdulinastion
belpsinspispi | | bursheram aceiss
Theireotpiericy analegy

=
Awse e dugraniy [0 e o s
u e

Lecture 2:

Modularizing Use

Cases and Expressing
Them in UML

Valentino Vranié

Ustav informatiky, informacénych systémov
a softvérového inZinierstva

vranic@stuba.sk fiit.sk/~vranic

MSOFT 2019/20
October 1, 2019

UC Place an Order

1. Customer selects to place an order.

2. System displays the search options.

3. Customer sets the search options and runs searching.

4. System displays the items that have been found.

5. Customer chooses among the items and confirms the choice.

6. System puts the selected items into the cart.

7. Customer can continue in selecting products — the use case continues with
step 2.

8. Customer orders the products in the cart.

9. System requests the data necessary to place the order including the
payment method.

10. Customer provides the necessary data.

11. Customer can give up the processes of product ordering at any time.

12. System records the order in a list of orders to be dispatched.

13. For each product in the order, System checks the available quantity.

14. If the quantity is below the limit, System adds the quantity under demand
to the restock plan.

15. The use case ends.

Preconditions: Customer is logged on

Postconditions:
« Minimal: products that have been a part of the order remain there
« Success: products ordered by Customer is a part of the order

UC Place an Order

1. Customer selects to place an order.

2. System displays the search options.

3. Customer sets the search options and runs searching.

4. System displays the items that have been found.

5. Customer chooses among the items and confirms the choice.

6. System puts the selected items into the cart.

7. Customer can continue in selecting products — the use case continues with
step 2.

8. Customer orders the products in the cart.

9. System requests the data necessary to place the order including the
payment method.

10. Customer provides the necessary data.

11. Customer can give up the processes of product ordering at any time.

12. System records the order in a list of orders to be dispatched.

13. For each product in the order, System checks the available quantity.

14. If the quantity is below the limit, System adds the quantity under demand
to the restock plan.

15. The use case ends.

UC Place an Order
Basic Flow: Place an Order

1. Customer selects to place an order.

2. The Search Products auxiliary flow is activated.

3. System puts the selected products into the cart.

4. Customer can continue in selecting products — the use case continues with
step 2.

5. Customer orders the products in the cart.

6. System requests the data necessary to place the order including the
payment method.

7. Customer provides the necessary data.

8. Customer can give up the processes of product ordering at any time.

9. System records the order in a list of orders to be dispatched.

10. If after dispatching the order the quantity of any product would fall below
the prescribed limit, System adds a record about the need to increase the
quantity of the corresponding product to the restock plan.

11. The use case ends.

Auxiliary Flow: Search Products
1. System displays the search options.

2. Customer sets the search options and runs searching.
3. System displays the items that have been found.

UC Place an Order
Basic Flow: Place an Order

1. Customer selects to place an order.

2. UC Search Products, its Search Products auxiliary flow, is activated.

3. System puts the selected products into the cart.

4. Customer can continue in selecting products — the use case continues with
step 2.

5. Customer orders the products in the cart.

6. System requests the data necessary to place the order including the
payment method.

7. Customer provides the necessary data.

8. Customer can give up the processes of product ordering at any time.

9. System records the order in a list of orders to be dispatched.

10. If after dispatching the order the quantity of any product would fall below
the prescribed limit, System adds a record about the need to increase the
quantity of the corresponding product to the restock plan.

11. The use case ends.

UC Search Products
Auxiliary Flow: Search Products
1. System displays the search options.

2. Customer sets the search options and runs searching.
3. System displays the items that have been found.

Jacobson

UC Place an Order
Basic Flow: Place an Order

1. Customer selects to place an order.

2. UC Search Products, its Search Products auxiliary flow, is activated.

3. System puts the selected products into the cart.

4. Customer can continue in selecting products — the use case continues with
step 2.

5. Customer orders the products in the cart.

6. System requests the data necessary to place the order including the
payment method.

7. Customer provides the necessary data.

8. Customer can give up the processes of product ordering at any time.

9. System records the order in a list of orders to be dispatched.

10. If after dispatching the order the quantity of any product would fall below
the prescribed limit, System adds a record about the need to increase the
quantiry of the corresponding product to the restock plan.

11. The use case ends.

UC Search Products
Auxiliary Flow: Search Products
1. System displays the search options.

2. Customer sets the search options and runs searching.
3. System displays the items that have been found.

Jacobson

public class Ordering {

public void order(Product product, int quantity) {

new SearchProducts().find(product);
if (getQuantity(product) >= quantity) {

} else...

UC Place an Order
Basic Flow: Place an Order

1. Customer selects to place an order.

2. UC Search Products, its Search Products auxiliary flow, is activated.
3. System puts the selected products into the cart.

4. Customer can continue in selecting products — the use case continues with
step 2.

5. Customer orders the products in the cart.

6. System requests the data necessary to place the order including the
payment method.

7. Customer provides the necessary data.

8. Customer can give up the processes of product ordering at any time.
9. System records the order in a list of orders to be dispatched.

10. The use case ends.

Alternative Flow: Modify the Restock Plan

In step 9 of the Place an Order basic flow, if after dispatching the order the
quantity of any product would fall below the prescribed limit:

1. System adds a record to the restock plan about the need to increase the
quantity of each such product in the order whose quantity would after
dispatching the order fall below the prescribed limit.

step 2.

5. Customer orders the products in the cart.

6. System requests the data necessary to place the order including the
payment method.

7. Customer provides the necessary data.

8. Customer can give up the processes of product ordering at any time.
9. System records the order in a list of orders to be dispatched.

10. The use case ends.

Alternative Flow: Modify the Restock Plan

In step 9 of the Place an Order basic flow, if after dispatching the order the
quantity of any product would fall below the prescribed limit:

1. System adds a record to the restock plan about the need to increase the
quantity of each such product in the order whose quantity would after
dispatching the order fall below the prescribed limit.

UC Place an Order
Basic Flow: Place an Order

1. Customer selects to place an order.

2. UC Search Products, its Search Products auxiliary flow, is activated.
3. System puts the selected products into the cart.

4. Customer can continue in selecting products — the use case continues with
step 2.

5. Customer orders the products in the cart.

6. System requests the data necessary to place the order including the
payment method.

7. Customer provides the necessary data.

8. Customer can give up the processes of product ordering at any time.
9. System records the order in a list of orders to be dispatched.

10. The use case ends.

Extension Points:
- Saving the Order: step 9

UC Modify the Restock Plan
Alternative Flow: Modify the Restock Plan

In the Saving the Order extension point in UC Place an Order, if after
dispatching the order the quantity of any product would fall below the
prescribed limit:

1. System adds a record to the restock plan about the need to increase the
quantity of each such product in the order whose quantity would after
dispatching the order fall below the prescribed limit.

O. UUSLULLICT Cdll Z1VE UpP LLIC PIOCCS5CS UL proauct OIUCriily di dlly LILLIC,
9. System records the order in a list of orders to be dispatched.
10. The use case ends.

Extension Points:
e Saving the Order: step 9

UC Modify the Restock Plan
Alternative Flow: Modify the Restock Plan

In the Saving the Order extension point in UC Place an Order, if after
dispatching the order the quantity of any product would fall below the
prescribed limit:

1. System adds a record to the restock plan about the need to increase the
quantity of each such product in the order whose quantity would after
dispatching the order fall below the prescribed limit.

UC Place an Order
Basic Flow: Place an Order
1. Customer selects to place an order.

2. UC Search Products, its Search Products auxiliary flow, is activated.
3. System puts the selected products into the cart.

4. Customer can continue in selecting products — the use case continues with

step 2.

5. Customer orders the products in the cart.

6. System requests the data necessary to place the order including the
payment method.

7. Customer provides the necessary data.

8. Customer can give up the processes of product ordering at any time.
9. System records the order in a list of orders to be dispatched.

10. The use case ends.

Extension Points:
« Saving the Order: step 9

UC Modify the Restock Plan
Alternative Flow: Modify the Restock Plan

In the Saving the Order extension point in UC Place an Order, if after
dispatching the order the quantity of any product would fall below the
prescribed limit:

1. System adds a record to the restock plan about the need to increase the
quantity of each such product in the order whose quantity would after
dispatching the order fall below the prescribed limir.

public class Ordering {
public void order(Product product, int quantity) {

if (..)
saveOrder();
for (Product product : orderltems) {
if (getQuantity(product) <
product.minimumQuantity()) {
/ add a record to the restock plan

else...

public aspect RestockPlan {

void around(Ordering ordering):
call(* Ordering.saveOrder()
&& this(ordering) {
for (Product product : orderltems) {
if (getQuantity(product) <
product. minimumQuantity()) {
// add a record to the restock plan

}

}else...

Would it be possible to
express the extend
relationship without
having to bind to
extension points or steps
explicitely?

UC Modify the Restock Plan

Cockburn

Alternative Flow: Modify the Restock Plan

Whenever an order is being saved in the system, if after dispatching the order
the quantity of any product would fall below the prescribed limit:

1. System adds a record to the restock plan about the need to increase the
quantity of each such product in the order whose quantity would after
dispatching the order fall below the prescribed limit.

UC Modify the Restock Plan

Cockburn

Alternative Flow: Modify the Restock Plan

Whenever an order is being saved in the system, if after dispatching the order
the quantity of any product would fall below the prescribed limit:

1. System adds a record to the restock plan about the need to increase the

quantity of each such product in the order whose quantity would after
dispatching the order fall below the prescribed limit.

UC Modify the Restock Plan
Alternative Flow: Modify the Restock Plan

Whenever an order is being saved in UC Place an Order, if after dispatching
the order the quantity of any product would fall below the prescribed limit:

1. System adds a record to the restock plan about the need to increase the
quantity of each such product in the order whose quantity would after
dispatching the order fall below the prescribed limit.

Can extend

be expressed as
include and vice
versas?

UC Place an Order
Basic Flow: Place an Order

1. Customer selects to place an order.

2. UC Search Products, its Search Products auxiliary flow, is activated.

3. System puts the selected products into the cart.

4. Customer can continue in selecting products — the use case continues with
step 2.

5. Customer orders the products in the cart.

6. System requests the data necessary to place the order including the
payment method.

7. Customer provides the necessary data.

8. Customer can give up the processes of product ordering at any time.

9. System records the order in a list of orders to be dispatched.

10. UC Modify the Restock Plan, its Modify the Restock Plan auxiliary flow, is
activated.

11. The use case ends.

UC Modify the Restock Plan
Auxiliary Flow: Modify the Restock Plan

1. If after dispatching the order the quantity of any product would fall below
the prescribed limit, System adds a record to the restock plan about the need
to increase the quantity of each such product in the order whose quantity
would after dispatching the order fall below the prescribed limit.

5. Customer orders the products in the cart.

6. System requests the data necessary to place the order including the
payment method.

7. Customer provides the necessary data.

8. Customer can give up the processes of product ordering at any time.

9. System records the order in a list of orders to be dispatched.

10. UC Modify the Restock Plan, its Modify the Restock Plan auxiliary flow, is
activated.

11. The use case ends.

UC Modify the Restock Plan
Auxiliary Flow: Modify the Restock Plan

1. If after dispatching the order the quantity of any product would fall below
the prescribed limit, System adds a record to the restock plan about the need
to increase the quantity of each such product in the order whose quantity
would after dispatching the order fall below the prescribed limit.

UC Place a Quick Order

The use case specializes UC Place an Order. The steps are overriden
as tollows:

1. Customer selects to place a quick order.
2. Customer provides directly a product code.

3. ...
4.

UC Manage a Product (CRUD)
Basic Flow: Create a Product

1. Merchant selects to create a product.

1. System requests the product data.

2.Merchant provides the name, type, and picture of the product.
3. System adjusts the size of the product to the standard size.

4. Merchant sets the product category.

5. If Merchant confirms the provided data, System saves them.
6. The use case ends.

Basic Flow: Display a Product

1. Merchant selects to display an existing product.

2. UC Search Products (its equally named flow) is activated.
3. System displays the selected product.

4. Merchant observes the product.

5. The use case ends.

UC Manage a Product (CRUD)
Basic Flow: Create a Product

1. Merchant selects to create a product.

1. System requests the product data.

2.Merchant provides the name, type, and picture of the product.
3. System adjusts the size of the product to the standard size.

4. Merchant sets the product category.

5. If Merchant confirms the provided data, System saves them.
6. The use case ends.

Basic Flow: Display a Product

1. Merchant selects to display an existing product.

2. UC Search Products (its equally named flow) is activated.
3. System displays the selected product.

4. Merchant observes the product.

5. The use case ends.

Basic Flow: Modify a Product

1. Merchant selects to modify an existing product.

2. UC Search Products (its equally named flow) is activated.

3. System opens the selected product and enables its modification.
4. Merchant modifies the product data.

5. If Merchant confirms the changes, System saves them.

6. The use case ends.

Basic Flow: Remove a Product

1. Merchant selects to remove a product.

2. UC Search Products (its equally named flow) is activated.

3. If Merchant confirms the product removal, System sets the removed flag on
this product.

4. The use case ends.

Jacobson

Use case
modularization
helps in coping with
their complexity

UC Manage a Product (CRUD)

Basic Flow: Modify a Product

1. Mercl selects to modify an existing product.

2. UC Search Products (its equally named flow) is activated.
3. System opens the selected product and enables its
modification.

4. Merchant modifies the product data.

5. If Merchant confirms the changes, System saves them.

6. The use case ends.

UC Manage a Product (CRUD)

Basic Flow: Modify a Product

. Merch :elects to modify an existing product.
2. UC Search Products (its equally named flow) is activated.
3. System opens the selected product and enables its
modification.
4. Merchant modifies the product data.
5. If Merchant confirms the changes, System saves them.
6. The use case ends.

[s everything in order with

UC Search Product?

Who is actually an e-shop customer?
Can a merchant be a customer?

UC Search Products
Auxiliary Flow: Search Products
1. System displays the search options.

2. Customer sets the search options and runs searchin
3. System displays the items that have been found.

Customer and Merchant are (specific) users

A user maintains orders in Excel
with a support at the level of
summary calculations etc.

Can in such a case UC Record an
Order be observed?

A use case is a part of the user
mental model with a better or
worse support in the software
system.

FindProductForm |[——————— > ProductForm

Use cases restrict
the user interface,
but they are not its
analogy

What's the meaning of a use
case diagram?

[s there something in it not
present in the text?

A use case diagram is
appropriate as an
overview, but it is not
the mainpart of the use
case model

Use cases can be relatively
straightforwardly expressed
using activity diagrams, but only
sequence diagrams help in
determining the structure of the
system becuase they express use
cases as object collaborations

Use case Use cases restrict

modularization the user interface,
helps in coping with but they are not its
their complexity analogy

A use case diagram is Use cases can be relatively

: straightforwardly expressed
appropriate as an

using activity diagrams, but only

overview, but it is not sequence diagrams help in

the mainpart of the use || determining the structure of the

case model system becuase they express use

cases as object collaborations

fiit.sk/~vranic/msoft/dot

