
Towards Combining Aspect-Oriented Design
Patterns

Radoslav MENKYNA∗

Slovak University of Technology
Faculty of Informatics and Information Technologies

Ilkovičova 3, 842 16 Bratislava, Slovakia
xmenkyna@is.stuba.sk

Abstract. Although aspect-oriented paradigm is quite new, patterns are
emerging in it already. This article provides an overview of common
aspect-oriented design patterns. The article discusses how these pat-
terns can be combined. Certain dependence between the design pattern
structure and its combination ability has been identified. Knowing a
structure of patterns, it is possible to say whether adding a new pattern
to existing one can be made with or without change of existing pattern.
Classification according to structure into pointcut design patterns and
advice design patterns is proposed.

1 Introduction

With increasing size of the project grows also the complexity of problems that have to be
solved. It is natural to use simple smaller building blocks to produce bigger structures.
That’s why it is natural to combine design patterns to solve complex problems.

This article identifies some regularities in combining aspect-oriented design patterns
according to their classification. Design patterns are classified according to structure
into pointcut and advice design patterns. Certain dependence between the combination
ability of specific pattern and its structure has been identified. According to structure of
the pattern it is possible to say whether adding some pattern to existing pattern can be
made with or without changes of existing pattern. The combination of design patterns
allows using their features together, but also it can lead to new features.

The rest of the article is organized as follows. In Section 2 an overview of aspect-
oriented design patterns can be found Section 3 presents a classification of aspect-oriented

∗ Supervisor: Dr. Valentino Vranić, Faculty of Informatics and Information Technologies STU
in Bratislava.

IIT.SRC 2007, Bratislava, April 18, 2007, pp. 1–8.



2 Radoslav Menkyna

design patterns according to Structure. Section 4 discusses how design patterns can be
combined and presents the dependence between structure and combination ability of
a pattern. Section 5 provides an overview of related work Section 6 represents the
conclusion and future work.

2 Overview of Aspect-Oriented Design Patterns

Despite aspect-oriented paradigm is just spreading, some strategies and idioms have
already been substantially generalized, do not rely on a particular language any more,
and as such can be accepted as design patterns. This section will present an overview of
common aspect-oriented design patterns.

2.1 Wormhole

The Wormhole pattern [4] connects the callee with caller in such a way that they share
their context information. It creates a direct connection between two levels in the call
stack. This is very helpful when additional context information has to be added [4].
Instead of adding extra parameters in each method in the control flow or using a global
storage, this pattern can be used.

2.2 Exception Introduction

In some cases when the aspect is used to implement some crosscutting concerns checked
exceptions have to be caught in its advice. This usually happens when methods of Java
libraries, which declare to throw such exceptions, are used in its advice. In AspectJ,1

advice cannot declare to throw a checked exception unless the advised joint point declared
this exception. The base concern logic cannot declare those exceptions because it simply
does not know anything about the logic used in the crosscutting concern [4].

The Exception Introduction pattern [4] suggest that the checked exceptions should
be caught and simply wrapped into new concern-specific runtime exceptions. Such
exceptions can be then thrown to higher level, where they can be unwrapped and the
real cause of exception revealed.

2.3 Participant

Usually, aspects try to introduce some behavior to a base concern in such a way that
the base concern is not aware of the aspect. In this pattern, the roles swap: an aspect
makes classes to participate. This is needed for the purpose the Participant [4] is trying
to achieve. In some cases, defining pointcuts only by the means of language syntax is
not sufficient.

1 This problem is common to many aspect-oriented languages.



Towards Combining Aspect-Oriented Design Patterns 3

For example, if the advice should affect only methods with certain characteristics,
one cannot decide only according to their names whether to include them in the pointcut
or not. Only the creator of these methods knows their characteristics. This is where
comes from the idea that classes themselves should express if they want to be advised.
If they want to participate they simply define an appropriate pointcut in them [4].

2.4 Cuckoo’s Egg

Cuckoo’s Egg design pattern [5] is quite simple but powerful. It expresses how powerful
aspect-oriented programming can be. It is used to control or change the objects created
by the constructor call. This means that with this pattern it is possible to change the type
of the object being instantiated [5].

2.5 Director

The Director pattern [5] can be used to define some roles or behavior to an unknown
number of classes. A role can be defined without knowing the particular class it will
be applied to. A pattern can be used to define some logic in an abstract aspect without
knowing the classes this logic will be applied to. The Director can also implement some
relationships within abstract entities [5].

2.6 Border Control

The Border Control design pattern [5] is used to define some reasonable regions in the
application. These regions are later reused by other aspects to ensure they are used only
in correct scope. Use of this pattern is also convenient when the changes in structure of
the application are expected. After such changes only declarations of regions in border
control aspect are changed and other aspects which are reusing these declarations will
be also affected [5].

2.7 Policy

The main idea of Policy pattern is to define some policy or rules within the application.
The rules can wary from suggestions and warnings to overriding methods, classes or
libraries. This is very useful in some project where many developers are involved [5].

2.8 Worker Object Creation

Worker Object Creation pattern [4] has a widespread use. For example, it may be used
when the use of the proceed call in an object-oriented context is needed or when the
proceed call should be executed in a different thread. This can be used with Java Swing
Framework, where all calls which update the GUI must be performed inside the event
dispatch thread [6]. Another example of the situation when the proceed call should be



4 Radoslav Menkyna

executed in a different thread is improving responsiveness of GUI applications which
perform complex computations (e.g., authorization and transaction management) [4].

This pattern can also be used to advise the proceed call. This is desired when the
aspect contains an around advice and the algorithm in the advice itself should be, for
example, traced or logged [6].

3 Aspect-Oriented Design Pattern Classification According to Struc-
ture

Interesting criterion for classification of aspect-oriented design patterns could be the
structure of an aspect-oriented design pattern.

Each design pattern is usually represented by one or more aspects. Structurally,
an aspect consists of three main components: inter-type declarations, pointcuts and
advices. Generally, the structure of an aspect that represents a design pattern can be
divided into two categories. These categories differ according to which component is
more significant for the main meaning for the purpose of the design pattern or, in other
words, which component is crucial to understand or achieve the logic of the design
pattern.

If main purpose is realized by pointcuts, advice is usually not presented or is very
simple. For example, an advice only presents how pointcuts would be used in it, but
the advice logic is not represented. In the category where advices have the main role,
pointcuts are usually declared as abstract or they are only symbolic.

Thus, according to their structure, aspect-oriented design patterns can be divided
into two categories: pointcut design patterns and advice design patterns. Patterns from
listed in the overview were divided according to structure into these categories:

• Pointcut design patterns: Wormhole pattern, Participant pattern, Border Control
pattern

• Advice design patterns: Worker Object Creation pattern, Exception Introduction
pattern, Cuckoo’s Egg pattern, Director pattern, Policy pattern.

In most cases patterns were easy to classify by this criteria. It is possible to point out
the Participant pattern (Section 2.3) where the pointcuts crucial to logic of the design
pattern are not defined the in aspect but in plain Java classes. The Director design
pattern (Section 2.5) has a logic that can be sometimes expressed in a more complex
way than just by an advice (e.g., using interfaces or additional method definitions). In
wormhole pattern (Section 2.1) the advice is present only to show how to use pointcuts
in it. At last, the Policy design pattern (Section 2.7) is in this paper treated like the advice
pattern, although it could be a representant of new inter-type declaration design patterns
category. From the point of combination these two categories have the same behaviour.



Towards Combining Aspect-Oriented Design Patterns 5

4 Combination of Aspect-Oriented Design Patterns

Aspect-oriented design patterns are defined in a modular way. They can be usually
implemented by one or more aspects, but in most cases their logic is concentrated in one
place. This comes from the nature of aspect-oriented programming. Aspects usually
alter behavior of base concerns without requiring awareness on their side. This makes
the combination of aspect-oriented design patterns easier than the combination of object-
oriented design patterns is. In general, a design pattern can be combined with many
other design patterns. The question is whether this combination would be useful and
meaningful. Due to this, we may expect that aspect-oriented design patterns more easily
form pattern languages.

In the following sections a dependence between the structure and combination ability
of patterns together with examples of combinations will be presented.

4.1 Dependence Between Structure and Combination Ability of Patterns

There is a connection between the structure of aspect-oriented design patterns and the way
how they can be combined with other aspect-oriented design patterns. The combination
of aspect-oriented design patterns is substantially affected by their structural type, this
means is possible to make statements about the way how this pattern could be combined
with other patterns.

It seems that a combining of a pointcut design pattern (Section 3) with another
pointcut design pattern does not require changes of existing design pattern. In this kind
of combination, the new pattern will reuse the pointcuts of the existing pattern. Adding
pointcut a design pattern to an advice design pattern usually requires changes in the
advice design pattern.

On the other hand, a combination of an advice design pattern with another design
pattern of any structural type can be done without changes to existing design pattern.
Examples of such combinations can be seen in sections: 4.2, 4.3. Dependence between
the structure of design patterns and the way how they can be combined is summarized
in Table 4.1.

Tab. 1. Dependence between the structure of design patterns and the way how they can be
combined.

pointcut advice
design pattern design pattern

pointcut without change
design pattern change required

advice without without
design pattern change change



6 Radoslav Menkyna

4.2 Adding a Feature

Sometimes, a design pattern only adds some feature to the system. If this feature is
needed by another design pattern, the patterns can be used together. Aspect-oriented
design patterns are usually represented by one or more aspects. From the nature of
aspects some design pattern can be added to another without the modification of the
existing pattern.

An example of such a pattern that can be combined with almost any other pattern is
the Exception Introduction design pattern (Section 2.2). This pattern adds the ability to
use exceptions in advices in a proper way. When this feature is needed in another design
pattern, the Exception Introduction pattern can simply be added to the program without
having to make any change in existing patterns. Also Policy design pattern (Section 2.7)
can be used together with another design patterns without any changes to those patterns.

Example of exception introduction pattern adapted from [4]:

public abstract aspect ExceptionIntroductionAspect {
abstract pointcut operations();
// pointcut operations defines where should exception occur.
// When this is defined as another design pattern exception introduction is used together with an existing pattern
// and any change of its code is required.
Object around() : operations() {

try {
return proceed();

} catch (CheckedException ex) {
throw new RuntimeException(ex);
// CheckedException will be caught and new runtime exception will be thrown.
}

}
}

Adding pointcut design pattern to an advice design pattern requires usually a change
in existing advice pattern. Example of such a pattern is the Border Control design pattern
(Section 2.6). This pattern defines regions that are later used by other aspects or design
patterns. This suggests that after adding a feature represented by this pattern existing
aspects and patterns have to be altered.

Assume the pointcuts of a particular pattern in a growing application can no longer
be defined in a simple way because it is not certain whether the pattern should be applied
to new classes. Such a pattern can be combined with a Participant pattern (Section 2.3)
and the class can participate in the application of this pattern. Due to the implementation
of the Participant pattern, the existing pattern code must be altered.

All the combinations in this section are summarized at Figure. 1. There are three
groups of design patterns on the figure. Any pattern from the groups on a sides can be
combined with any pattern in the middle. Combining pattern from the left group, advice
design pattern, can be usually done without change. When using pattern from the right
group, pointcut design pattern, changes of existing design pattern will be required. All
patterns in the middle group are advice design patterns.



Towards Combining Aspect-Oriented Design Patterns 7

Fig. 1. Illustration of possible combinations of aspect-oriented design patterns.

4.3 Achieving New Functionality

Aspect-oriented design patterns can also be combined to achieve new functionality. A
simple example of such a use is the combination of the Policy design pattern (Section 2.7)
with Cuckoo’s Egg design pattern (Section 2.4). The Policy pattern in most cases only
defines some warnings or suggestions upon breaking the specific policy. By combining
it with the Cuckoo’s Egg design pattern it is possible to go further by not only showing
warning, but also override the use of specific classes and their methods.

5 Related Work

In GoF description of object-oriented design patterns [1] a section called related patterns
can be found. This section lists the names of the patterns often used with the pattern.
This in other words suggests which patterns can be combined with the pattern to solve
some problem. GoF also presented graphical representation of these relations. From
this representation, groups of patterns that are often combined can bee seen.

Object-orientated design patterns were reimplemented in AspectJ [3]. In many
cases better modularity was achieved, so the design pattern structure became clearer
and simpler to understand [3]. These patterns could be also combined with the intrinsic
aspect-oriented design patterns and better modularity achieved by reimplementation
would ease this combination.

Combination of idioms is similar to combination of design patterns. Idioms can be
generalized to become design patterns. Also idioms can be combined in various ways
to achieve a solution to some problem [2].

6 Conclusion and Future Work

The Article proposed ways how the aspect oriented design patterns can be combined.
Certain dependence between the design pattern structure and its combination ability
was discussed. The combination of the pointcut design pattern with another pointcut
pattern is usually done without need to modify the existing pattern. The combination of
the pointcut design pattern with an advice design pattern requires a change of existing



8 Radoslav Menkyna

structures during the implementation. Adding an advice design pattern to another design
pattern leads usually to the implementation where no change of existing pattern is needed.

This paper provided an overview of common aspect-oriented design patterns. An
alternative way of classification according to the structure of an aspect that represents the
design pattern was presented. Aspect-oriented patterns were divided into two categories:
pointcut design patterns and advice design patterns.

As a future work I would like to examine some inter-type declaration design patterns
which can form another structural category. More combinations of the aspect-oriented
design patterns should be examined. It is expected that new patterns will arise, which
will bring new possibilities into the combinations. There are also many object-oriented
design patterns reimplemented in AspectJ [3]. Combination of these patterns with
intrinsic aspect-oriented design patterns could be also interesting.

Acknowledgement: This work was partially supported by the Scientific Grant Agency
of Slovak Republic, grant No. VG1/3102/06.

References

[1] Gamma, E., et al.: Design patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc., 1995.

[2] Hanenberg, S., Schmidmeier, A., Unland, R.: AspectJ Idioms for Aspect-Oriented
Software Construction. In: Proceedings of EuroPLoP 2003, 2003.

[3] Hannemann, J., Kiczales, G.: Design pattern implementation in Java and AspectJ.
In: Proceedings of the 17th conference on Object-oriented programming, systems,
languages, and applications (OOPSLA), 2002, pp. 161–173.

[4] Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning,
2003.

[5] Miles, R.: AspectJ Cookbook. O’Reilly, 2004.
[6] Schmidmeier, A.: Patterns and an Antiidiom for Aspect Oriented Programming.

In: Proceedings of 9th European Conference on Pattern Languages of Programs,
EuroPLoP 2004, Irsee, Germany, 2004.


