
IIT.SRC 2016, Bratislava, April 28, 2016

Similarities in Source Codes

Marek ROŠTÁR*

Slovak University of Technology in Bratislava

Faculty of Informatics and Information Technologies

Ilkovičova 2, 842 16 Bratislava, Slovakia

rostarmarek@gmail.com

Abstract. With an increasing popularity of different programming languages,

a problem of finding similar parts of source codes across different

programming languages is rising. Finding such parts of codes can be useful

for improving source code quality or identifying potential plagiarism. In

current day and age there are multiple ways of identifying similarities in the

source code or text documents. Most known are text/token based methods,

which can be strengthened with stronger preprocessing of given source codes.

In this work we focus mainly on identifying similarities using abstract syntax

tree. We also explore the possibilities of applying different levels of

preprocessing of source code and its benefits from the performance point of

view.

1 Introduction and related work

In current day and age with the development of software there is an increase of problems

concerning plagiarism, but also it is quite common to see repeated use of source code parts. These

two issues are the main reasons to explore the task of source code comparison, since it can detect

most of plagiarism attempts and also highlight which parts of our source code are we using

repeatedly. Such parts we may consider to turn into some sort of library or plugin, to improve our

source code quality.

Plagiarism is these days one of the relevant problems of the academia, affecting not only text

documents but also most of intellectual property including source codes. It is common that

students inspire themselves with some work they found on the Web.

In this work we focus on detecting plagiarism in source code specifically (considering its

special features in comparison to the standard text documents). Methods used to detect plagiarism

in source code differ from methods used to detect plagiarism in text documents [1, 2], since the

text in source code does not carry only meaning but some sort of function as well.

Plagiarists try to deceive anyone viewing their work with a multitude of different plagiarism

attacks, which for plagiarism in source codes, the basic ones are as follows: altering comments in

source code, altering whitespaces present in source code, altering names of variables, altering the

order of parts of the source code, altering algebraic expressions in source code, translating source

code into another programming language and extracting parts of source code.

* Bachelor degree study programme in field: Informatics

Supervisor: Dr. Michal Kompan, Institute of Informatics and Software Engineering, Faculty of Informatics

and Information Technologies STU in Bratislava

 Intelligent Information Processing

While altering comments in source code, the plagiarist leaves the whole structure of the

source code and its functionality intact, but alters the visual part of the source code by either

adding, removing or changing the content of the comments. Comments usually bear no

functionality in the source code and usually are used to explain the source code.

Altering whitespaces is very similar to altering comments, but it is worth to note that this

type of attack is not always applicable, since there are some programming languages in which

whitespaces bear functionality. One of such programming languages is Python, in which

whitespaces are used to denote blocks. Altering the names of variables will as well change the

visual structure of the source code while not interfering with its functionality.

While altering the order of parts of the source code the plagiarist will change the order of

separate blocks of source code. This does not interfere with the functionality of the source code

and changes it visual structure. It is worth noting that in some languages order of functions

matters. In these languages if some function will be using another one that is in original source

code written sooner and in the altered source code the order is reversed, the function used in the

other function has to be declared before it is used.

Altering algebraic expression takes advantage of commutative and distributive properties of

certain algebraic operations. There is also the possibility of changing some parts of expressions

that compare two numbers in a way that it will have the same logic but it will be visually different.

Translating source code to different programming language is not always a plagiarism attack,

since sometimes the language to which is the source code being translated to does not have all the

tools and structures necessary being used in the original programming language. In our work we

focus on such sort of translation, which does not include any additional work from the person that

translated the source code.

Extracting parts of the source code means that the plagiarist will remove some part of the

source code and put it into a separate file. He will then include in the source code and call the

functionality removed from original source code from the external file, and thus changing the

visual structure of the source code while not interfering with its functionality.

The comparison of different plagiarism detection methods over various plagiarism attacks

was discussed in [2], where the authors tested performance of different plagiarism detection

methods fare against different types of plagiarism attacks on small scale source codes.

In [1], different types of plagiarism are discussed as well as methods used to detect

plagiarism in general not only in source codes. This work goes over the differences in the literal

plagiarism and intelligent plagiarism.

There are some works that explore combining different methods of detecting plagiarism [7,

8] to create so-called hybrid methods of plagiarism detection. In these specific works combination

of tree based methods with either semantic based methods or token methods is applied.

Park et al. [5] discusses the application of source code abstraction for large scale source

codes to improve the efficiency and accuracy of detecting similarities in those source codes. It

proposes an automated abstraction method, which gets rid of large part of the source code, which

is deemed as unimportant. Chillowicz et al. [3], improves method based on abstract syntax tree by

creating fingerprints of compared documents and comparing them.

2 Plagiarism detection methods

There are several views used to detect plagiarism hierarchies. In this work we will differentiate

four basic approaches [6]:

 Text based methods

 Token based methods

 Tree based methods

 Semantic based methods

 Marek Roštár: Similarities in Source Codes

Another example of method division into groups is where we divide methods into two groups

depending on the fact if they take into consideration the meaning of the part they are comparing or

not. In this view, we would put only text based methods in the group that does not take into

consideration the meaning of source code.

2.1 Text based methods

Text based methods are generally (in the context of source code plagiarism) the quickest of all of

the types of plagiarism detection methods. On the contrary, these are also most vulnerable to

plagiarism attacks. Text based methods go step by step through the source code while comparing

strings in them. Such methods can return various metric depending on which algorithm belonging

to this type is used.

One of such algorithm is LCS algorithm [8], which returns the longest common subsequence

between both source codes that are being compared through this algorithm.

The advantages of using text-based methods are that they are fast, they don’t require

complicated data structures and are generally easier to understand. The disadvantages are that they

are vulnerable to attacks, which means they often need to have the source codes heavily pre-

processed to counter these plagiarism attacks, and they do not take into consideration the meaning

and context of parts of the source code.

2.2 Token based methods

Token based methods are based on the serialization of parts of the source code into tokens which

in the next phase replace the actual source code. This tokenization is done by the mean of lexical

analysis of the source codes before comparing them, and selecting important parts which are then

turned into tokens.

Lexical analysis can be done for example by creating a finite-state machine, to which we will

define rules containing regular expressions. Using such lexical analysis, it is easy to see that

through the rules we can select parts of the source code that we find important and we can discard

the rest. After we have selected the important parts, we compare these altered source codes using

text based methods.

 Advantages of token based methods are that they are more resistant plagiarism attacks than

text based methods, while keeping close in their computation time to them. Disadvantage

compared to text-based methods is slightly slower computation time and the addition of some data

structures in lexical analysis.

2.3 Tree based methods

Tree based methods are based on converting source code into a data structure of tree and after the

conversion comparing the trees instead of source codes themselves.

These methods usually create trees by doing lexical analysis, similar to token based methods.

But afterwards they use the source code after the lexical analysis in a syntactical analysis, that

takes blocks of source code and transforms them into nodes adding information about them, like

position in source code. After the transformation is done the hash function is used to compute hash

values of given nodes. Then the comparison of the trees on a node to node basis is performed.

Nowadays there are parser we can use to do the lexical and syntactical analysis, instead of having

them as a separate part.

Advantages of this method are that it is resistant to plagiarism attacks and it can find

behavioral changes, which can be used for finding malicious source code [4]. Its disadvantages are

time consumption and addition of new data structures.

 Intelligent Information Processing

2.4 Semantic based methods

Semantic based methods do take into account not only the meaning of the source code, but also the

context of parts of the source code. Thanks to this it can handle polysemy and synonymy. One of

such semantic based methods uses program dependency graphs, in a similar way as the tree based

methods use trees. Source codes are converted into graphs and then to compute similarity metric,

we need to convert the graphs into adjacency matrices. When the matrices differ in size the smaller

one extended with rows and columns of zeros to have the same size as the bigger one. Then we

need to convert the matrices into vector and by comparing those, we get the similarity metric.

3 Source code abstraction

When we are working with source code we can remove for us unimportant parts and thus create an

abstract source code. We use this sort of pre-processing often when we compare source code to

find similarities in given source codes. There are multiple levels of abstraction, and we can

determine how strong abstraction we need based on how big is the source code [5]. For small and

medium scale source codes we often use only low levels of abstraction, but for large scale source

codes we often use strong levels of abstraction. Low levels of abstraction commonly remove

comments, unifies whitespaces, unless it is written in a programming language in which

whitespaces denote blocks. Stronger levels of abstraction can alter different things, such as

removing declaration of variables, values of strings or algebraic expressions from the source code.

Thanks to abstraction, we can vastly reduce the volume of the source code and with that

speed up the process of comparing the source code. It can also remove some false positive cases,

but it can also create other false positive, by removing important parts of the source code that we

did not think were important.

4 Proposed solution

In this work we propose method of detecting plagiarism using abstract syntax tree so let’s go now

go into detail about this method. Our method can be divided into 5 steps: construction of the

abstract syntax tree, computing hash values of nodes of the abstract syntax tree, adding

information about node, comparing the trees and computation of similarity metric.

To create abstract syntax tree of the source code we use the parser. Thanks to this step we get

rid of some unimportant parts of the source code. After the tree is completed we compute hash

values of the nodes, where for leaves the value will be the hash of their content and for other nodes

the hash value is the sum of the hash values of its children and its hash value. This eliminates

plagiarism attacks that alter the order of source code, because even if we swap two children of a

node, value in the node will remain unchanged. When we have computed hash values of the nodes

of the tree we can add additional information about notes such as number of children nodes or type

of node, which speed up the comparison process. This step is optional. Then we can compare the

trees on a node to node basis and after we finish we compute similarity metric (e.g., cosine

similarity, Jaccard index).

Proposed approach is designed to include different levels of abstraction on source code

before we convert the source code into the tree. There are in total three levels of abstraction,

ranging from removing only comments and unifying white spaces to the highest level, in which we

replace strings values, remove variable declarations, unify the names of variables and greatly

reduce the volume of the source code.

4.1 Evaluation

In the experimentation phase we will compare the computation time for comparison between the

different levels of abstraction and performance of proposed approach (in the context of detected

 Marek Roštár: Similarities in Source Codes

similarities and codes). In order to compare our results to the state-of-the-art solutions we also

compare our method with results of MOSS, which uses token based method. For the comparison

we will use dataset obtained from bachelor course Artificial intelligence on our faculty and the

SSID dataset1.

5 Conclusions

The problem of plagiarism is on the rise in the academia. It affects not only text documents but it

spread its influence over different intellectual property such as source codes. Plagiarism of source

codes differ from plagiarism of text documents, for example in attacks which plagiarist takes to

obscure the fact that they have stolen given intellectual property, which we have discussed.

Currently there are multiple methods of detecting plagiarism in source codes. We have

divided these methods into four groups of text based, token based, tree based and semantic based

methods of detecting plagiarism. These methods take different time to compare source codes and

are differently vulnerable to plagiarism attacks.

We can reduce amount of the time needed to compare source code by using abstraction on

them to remove unimportant parts of the source code at the risk that we may lose some

information when removing parts of the source code.

In our experiment we compare if using stronger abstraction on source code before sending it

into abstract syntax tree and comparing the trees is viable. We use three different levels of

abstraction and we compare the performance of our algorithm to a free source code comparison

tool, which used token based method to detect plagiarism.

References

[1] Alzahrani, S. M., Salim, N., & Abraham, A.: Understanding plagiarism linguistic patterns,

textual features, and detection methods. IEEE Transactions on Systems, Man and

Cybernetics Part C: Applications and Reviews, (2012), vol. 42, no. 2, pp. 133–149.

[2] Beth, B.: A Comparison of Similarity Techniques for Detecting Source Code Plagiarism.

(2014).

[3] Chilowicz, M., Duris, E., & Roussel, G. Syntax tree fingerprinting for source code similarity

detection. IEEE Int. Conference on Program Comprehension, (2009), pp. 243–247.

[4] Neamtiu, I., Foster, J. S., & Hicks, M.: Understanding source code evolution using abstract

syntax tree matching. ACM SIGSOFT Software Engineering Notes, (2005), vol. 30, no.4, 1.

[5] Park, S., Ko, S., Choi, J. J., Han, H., & Cho, S.-J.: Detecting Source Code Similarity Using

Code Abstraction Categories and Subject Descriptors. Proc. of the 7th Int. Conf, on

Ubiquitous Information Management and Communication - ICUIMC ’13, (2013), pp 1–9.

[6] Tao, G., Guowei, D., Hu, Q., & Baojiang, C.: Improved Plagiarism Detection Algorithm

Based on Abstract Syntax Tree. Emerging Intelligent Data and Web Technologies (EIDWT),

2013 Fourth Int. Conf. on, (2013), pp. 714–719.

[7] Wu, S., Hao, Y., Gao, X., Cui, B., & Bian, C.: Homology detection based on abstract syntax

tree combined simple semantics analysis. Proceedings - 2010 IEEE/WIC/ACM Int. Conf. on

Web Intelligence and Intelligent Agent Technology - Workshops, WI-IAT 2010, (2010), pp.

410–414.

[8] Zhang, Y., Gao, X., Bian, C., Ma, D., & Cui, B.: Homologous detection based on text,

Token and abstract syntax tree comparison. Proc. 2010 IEEE Int. Conf. on Information

Theory and Information Security, ICITIS 2010, (2010), pp. 70–75.

1 http://wing.comp.nus.edu.sg/downloads/SSID/

