
λ-calculus

Matej Koš́ık

12th November 2005

Disclaimer

This material is derived from this [1] book without notifying the publisher. Publishing it in any
form would mean that you violated the existing copyright laws.

Parts of this material were also copied from [2], so they are covered by Creative Commons License.

The material you are viewing was created only for internal needs of our community.

Outline

Contents

1 Notions and properties of the λ-calculus 4

1.1 Evaluation order independence . 4

1.2 Referential transparency . 5

1.3 Bound and free identifiers . 6

2 λ-calculus programming language basics 7

2.1 Syntax . 7

2.2 Normal form . 11

2.3 Multiple Parameters . 12

1

2.4 Abbreviations . 13

3 Basic data-types 14

3.1 Booleans . 14

3.2 Direct Product Types . 16

3.3 Direct Sum of Types . 19

3.4 Sequences . 20

4 Auxiliary Declarations 22

5 Recursive Declarations 23

6 Natural Numbers 29

The Context

Words like algebra and algorithm have their ancient origins in the celebrated book Q�.
�
m.
Ì'@ H. A

��
J »�

é
�
ÊJ.�

��
®�ÜÏ @

�
ð written by ú

×
�

	PP
�
@
�
ñ

	
k È@ úæ

�
�ñ
�
Ó 	áK. @ Y

��
Ò
�
m
�
× é

�
ÊË @ YJ.

�
« ñ

�
K.

�
@ [3]

Here are some of the notions which participate on full formalization of the notion computation.

Algorithms are essential to the way computers process information, because a computer program
is essentially an algorithm that tells the computer what specific steps to perform (in what specific
order) in order to carry out a specified task [2]. Thus, an algorithm can be considered to be any
sequence of operations which can be performed by a Turing-complete system.

In computability theory a programming language or any other logical system is called Turing-
complete if it has a computational power equivalent to a universal Turing machine. In other words,
the system and the universal Turing machine can emulate each other [2].

Turing machine consists of [2]:

1. A tape which is divided into cells, one next to the other. Each cell contains a symbol from
some finite alphabet. The alphabet contains a special blank symbol (here written as ’0’) and
one or more other symbols. The tape is assumed to be arbitrarily expandable to the left and
to the right, i.e., the Turing machine is always supplied with as much tape as it needs for its
computation. Cells that have not been written to before are assumed to be filled with the

2

blank symbol.

2. A head that can read and write symbols on the tape and move left and right.

3. A state register that stores the state of the Turing machine. The number of different states
is always finite and there is one special start state with which the state register is initialized.

4. An action table (or transition function) that tells the machine what symbol to write, how to
move the head (’L’ for one step left, and ’R’ for one step right) and what its new state will
be, given the symbol it has just read on the tape and the state it is currently in. If there is
no entry in the table for the current combination of symbol and state then the machine will
halt.

Note that every part of the machine is finite; it is the potentially unlimited amount of tape that
gives it an unbounded amount of storage space.

In computability theory a countable set is called recursive [2], computable or decidable if we can
construct an algorithm which terminates after a finite amount of time and decides whether or not
a given element belongs to the set.

In computability theory a countable set S is called recursively enumerable [2], computably enumer-
able, semi-decidable or provable if

• There is an algorithm that, when given an input — typically an integer or a tuple of integers
or a sequence of characters — eventually halts if it is a member of S. Otherwise, there is
no guarantee that the algorithm will halt.

Or, equivalently,

• There is an algorithm that ”generates” the members of S. That means that its output is
simply a list of the members of S: s1, s2, s3,. . . If necessary it runs forever.

Earlier, there was a tendency to define semantics of a programming language formally. One of
the way how they accomplished it was by defining a function which projects any program in that
language to a λ-expression (e.g. Actors and Algol). This has sense because semantics of the λ-
calculus is clear (because it is such a simple language) and actually the term what is an algorithm
was defined by means of λ-calculus or equivalent models (Turing machines, Post productions,
Markov algorithms).

So, with the help of λ-calculus we can define what is an algorithm. However, not everything can
be regarded as algorithm. Systems which operate continuously (they are not expected to halt) or
systems interacting with other systems in their environment cannot be squashed to the notion of
algorithm. The need for constructing such a system is becoming more and more common these days.
They are not algorithms. Description of these systems—continuously operating and interacting with
other systems in their environment—are best described by other formalisms [4, 5, 6]. But, these
formalisms are not the topic of this presentation.

3

The Context

• computability theory

– algebra and algorithms

– Turing completeness

– Turing machine

– recursive set, recursively enumerable set

– recursive function

– primitively recursive function

• λ-calculus as a model for sequential computation

• Other models of sequential computation

– Turing machines

– Post productions

– Markov algorithms

• λ-calculus and operational semantics

• continuously operating, interacting, concurrent systems

1 Notions and properties of the λ-calculus

Notions and properties of the λ-calculus

• evaluation

• evaluation order independence [1, §1.3]

• referential transparency [1, §1.4]

1.1 Evaluation order independence

To evaluate some expression means to extract its value. Evaluation of the expression 6 × 2 + 2
gives us the number 14. Could we evaluate also expression (2ax + b)(2ax + c)? No, unless we
know the values of a, b, c, and x, i.e. the context of this expression. Assuming that a = 3, b = 2,
c = −1 and x = 2 we are able to evaluate this expression to integer 154. The notion evaluation
order independence means that it is possible to choose any order for reduction of sub-expressions
provided that we do obey explicit and implicit parentheses.

4

Evaluation order independence

• We are free to choose any order in which we reduce expressions

• Of course, we have to obey:

– explicit parentheses

– implicit parentheses (operator priorities according to the contracts which were made in
order to reduce the total number of parentheses)

Evaluation of 6× 2 + 2

• 6× 2 + 2 ⇒ 12 + 2 ⇒ 14

Left-to-right evaluation of (2ax+ b)(2ax+ c)

(2ax + b)(2ax + c)provided that a ⇒ 3, b ⇒ 2, c ⇒ −1 and x ⇒ 2 ⇒ (2 × 3 × x + b)(2ax + c)
⇒ (6×x+b)(2ax+c) ⇒ (6×2+b)(2ax+c) ⇒ (12+b)(2ax+c) ⇒ (12+2)(2ax+c) ⇒ 14×(2ax+c)
⇒ 14× (2× 3× x+ c) ⇒ 14× (6× x+ c) ⇒ 14× (6× 2 + c) ⇒ 14× (12 + c) ⇒ 14× (12 + (−1))
⇒ 14× 11 ⇒ 154

Right-to-left evaluation of (2ax+ b)(2ax+ c)

(2ax+ b)(2ax+ c) ⇒ 154provided that a⇒ 3, b⇒ 2, c⇒ −1 and x⇒ 2 ⇒ (2ax+ b)(2ax+ (−1))
⇒ (2ax+b)(2a×2+(−1))⇒ (2ax+b)(2×3×2+(−1))⇒ (2ax+b)(2×6+(−1))⇒ (2ax+b)(12+(−1))
⇒ (2ax+ b)× 11 ⇒ (2ax+ 2)× 11 ⇒ (2a× 2 + 2)× 11 ⇒ (2× 3× 2 + 2)× 11 ⇒ (2× 6 + 2)× 11
⇒ (12 + 2)× 11 ⇒ 14× 11 ⇒ 154

“Random” evaluation of (2ax+ b)(2ax+ c)

(2ax+ b)(2ax+ c) ⇒ 154provided that a⇒ 3, b⇒ 2, c⇒ −1 and x⇒ 2 ⇒ (2ax+ b)(2× 3×x+ c)
⇒ (2ax+b)(6×x+c) ⇒ (2×3×x+b)(6×x+c) ⇒ (2×3×2+b)(6×x+c) ⇒ (2×6+b)(6×x+c)
⇒ (2 × 6 + b)(6 × 2 + c) ⇒ (2 × 6 + b)(12 + c) ⇒ (2 × 6 + b)(12 + (−1)) ⇒ (12 + b)(12 + (−1))
⇒ (12 + 2)(12 + (−1)) ⇒ 14× (12 + (−1)) ⇒ 14× 11 ⇒ 154

1.2 Referential transparency

Referential transparency means that two identical λ-expressions on different places will have the
same value if they are placed in equivalent context.

5

Referential transparency

• (2ax + b)(2ax + c) ⇒ 154 provided that a ⇒ 3, b ⇒ 2, c ⇒ −1 and x ⇒ 2 ⇒ (2 × 3 ×
2 + b)(2ax + c) ⇒ (12 + b)(2ax + c) ⇒ (12 + b)(12 + c) ⇒ (12 + 2)(12 + c) ⇒ 14 × (12 + c)
⇒ 14× (12 + (−1)) ⇒ 14× 11 ⇒ 154

1.3 Bound and free identifiers

Bound identifiers [1] are common in the world of mathematics.

n∑
i=1

(i2 + 1)

Here i is a bound identifier. It is a characteristic of bound variables that they can be systematically
changed without altering the meaning (the value) of a formula. For example,

n∑
k=1

(k2 + 1)

means exactly the same thing as the previous summation. Similarly, the integral of x2 − 3x with
respect to x ∫ t

0
x2 − 3x dx

is the same as the integral of u2 − 3u with respect to u∫ t

0
u2 − 3u du

In set theory, the set of all x such that x ≥ 0 is the same as the set of all y such that y ≥ 0

{x |x ≥ 0} = {y | y ≥ 0}

Examples from mathematics

∑n
i=1(i

2 + 1)
∑n

k=1(k
2 + 1)∫ t

0 x
2 − 3x dx

∫ t
0 u

2 − 3u du

{x |x ≥ 0} {y | y ≥ 0}

∀x(x+ 1 > x) ∀y(y + 1 > y)

6

There are two important notions: bound occurrence and free occurrence. Consider the expression

i
n∑

j=1

(j2 + i− a)

Here j in j2 + i − a is called bound occurrence of the identifier j. It is bound by summation
operator

∑
, which is called binding site (or just binding) of this occurrence of j. Because j is

bound, we can change it to any other identifier but i and a without changing the meaning of the
expression:

i
n∑

k=1

(k2 + i− a)

Any occurrence of an identifier that is not a bound occurrence is called free occurrence. For example
i, n and a all occur free in the previous expression. Clearly, if we change a free identifier we have
changed the meaning of the expression

i

n∑
j=1

(j2 +m− a)

Related notions

• bound identifier is j

• bounding site is
∑

• free identifiers are i, n and a

i
n∑

j=1

(j2 + i− a)

2 λ-calculus programming language basics

2.1 Syntax

When bound identifiers are used in function definitions they are often called formal parameters.
For example, in

f(x) ≡ x2 − 3x

x is the bound identifier or formal parameter. In lambda calculus this function would be written
as

λx(x2 − 3x)

7

which can be read “that function which takes any x into x2 − 3x.” The Greek letter λ does not
stand for anything.

In the λ-calculus, function application is just a substitution process. For example, suppose we have
defined

f ≡ λx(x2 − 3x)

and want to know the value of f(5); we can find it by substituting 5 for x throughout its scope.
More specifically, we start with

f(5)

Substituting λx(x2 − 3x) for f , we get

λx(x2 − 3x)(5)

Now we replace this expression by a copy of the body of f, i.e.

(5)2 − 3(5) ⇒ 25− 15 ⇒ 10

Example λ expression

• abstraction describes some computation (function)

f(x) ≡ x2 − 3x

λx(x2 − 3x)

• substitution rule is used when a function is applied to parameters

(f 5) ⇒ (λx(x2 − 3x) 5) ⇒ 52 − 3× 5 ⇒ 25− 15 ⇒ 10

Pure λ-expressions are formed only by the following three rules:1

Formal Grammar

expression =

identifier
(λ identifier expression)
(expression expression)

Further contracts:
1This grammar would be ambiguous if there were allowed also identifiers consisting from multiple characters.

Here, spaces could be inserted whereever this is advantageous (for the sake of readability).

8

• The other-most parentheses could be dropped.

• The application operation is associative from left to right, so we can write (xy)z as xyz.

An expression λxE may be reduced by renaming to an expression λyF , where F is obtained from
E by replacing all free occurrences of x in E by y. This is allowed only if y does not occur in E.

Substitution rule

The second rule (besides substitution) is renaming

λx(x2 + 2x+ 1) ⇒ λu(u2 + 2u+ 1)

λxx⇒ λaa⇒ λgg ⇒ λff

λx(λy(xy)) ⇒ λf(λy(fy)) ⇒ λf(λa(fa))

λx(x+ 1) ⇒ λu(u+ 1)

λx(λy(x+ y)) ⇒ λa(λy(a+ y)) ⇒ λx(λb(a+ b))

λx(x+ y)⇒/ λy(y + y)

(λx(λy(x+ y))) (y + 1)⇒/ λy(y + 1 + y)

(λx(λy(x+ y))) (y + 1) ⇒ (λx(λz(x+ z))) (y + 1) ⇒ λx(y + 1 + z)

In λ-calculus we have a similar problem with substitution as we had in the land of logic [7, §3.1.3] [8,
§3.3]. If we have an application:

(λxE) F

i.e. two λ-expressions: λxE and F where λxE is applied to F which is its parameter. We say that
F is substitutable instead of x in E if2 F does not contain free occurrences of x. If it contained
free occurrence of x, it would be captured (become bound) performing the substitution. Therefore
the following λ-expression:

(λx(λy(x+ y))) (y + 1)

cannot be näıvely reduced to:
λy(y + 1 + y)

2Actually, F shouldn’t contain any free variables which could after substitution become bound.

9

because the latter λ-expression would have different value than the original one. The substitution
should be performed in two steps. First we rename the problematic bound variable:

(λx(λz(x+ z))) (y + 1)

and then we perform the actual substitution:

λz(y + 1 + z)

To make this affair even clearer we give another example from (perhaps) more obvious calculus:

Consider an expression:
100∑
i=10

i+ x

Suppose that we have learned that
x = y + 1

We can substitute free occurrences of the variable x in expression
∑100

i=10 i+x with y+1 as follows:
100∑
i=10

i+ y + 1

We are sure that the latter expression is equal to the original one (of course under that assumption
that x = y + 1).

Now suppose that we have revealed that:

x = i+ 1

Do you think that we could näıvely substitute i+ 1 instead of x in the original expression:
100∑
i=10

i+ x

? Obviously not because if we did that we would get
100∑
i=10

i+ i+ 1

and that is not equal to the original expression even under the assumption that x = i+ 1. In order
to be able to make that substitution we have first to rename the problematic bound variable to
some fresh variable for example j:

100∑
j=10

j + x

Now we are free to perform the substitution i+ 1 instead of all free occurrences of x. This yields:
100∑

j=10

j + i+ 1

The last expression is equal to the original one under the assumption that x = i+ 1.

10

2.2 Normal form

If and when an expression is reduced to the extent that the substitution rule can no longer be
applied, it is said to be in normal form (sometimes reduced form). Intuitively, an expression is in
normal form when it is an answer (i.e., it is done computing).

Normal form

definition

Not Normal Normal
(λxx) y y
(λy(fy)) a fa
(λx(λy(xy))) a λy(ay)
(λxx) (λxx) λxx
(λx(xx)) y yy
(λx(xy)) (λx(xx)) yy

There are λ-expressions which do not have normal form. The Church-Roser theorem says, however,
that if it is possible to reduce a given λ-expression to its normal form then we always get the same
expression regardless of the order in which we perform reductions of subexpressions.

Non-normalizable λ-expressions

There are λ-expressions which do not have normal form.

(λx(xx)) (λx(xx)) ⇒ (λx(xx)) (λx(xx))
⇒ (λx(xx)) (λx(xx))
⇒ (λx(xx)) (λx(xx))
⇒ . . .

(λx(f(xx))) (λx(f(xx))) ⇒ f((λx(f(xx))) (λx(f(xx))))
⇒ f(f((λx(f(xx))) (λx(f(xx)))))
⇒ f(f(f((λx(f(xx))) (λx(f(xx))))))
⇒ . . .

Church-Roser theorem [1, §9]

11

2.3 Multiple Parameters

We argue that the λ-calculus is computationally complete, that is, that it can compute any com-
putable function. In one sense this is trivial since the notion of computability is often defined in
reference to the λ-calculus. On the other hand, it’s certainly not intuitively obvious that the pure
λ-calculus contains the necessary power to write all programs. Therefore here we will define in the
pure λ-calculus the basic data types commonly used in programs: booleans, integers, tuples and
sequences.

Although the λ-expression we have defined to have only one parameter, we can get the effect of
two parameters by nesting functional abstractions, a technique known as currying. For example,

(λx(λy(x+ y))) 3 1 ⇒ λy(3 + y) 1 ⇒ 3 + 1 ⇒ 4

Because such curried functions are so common in the λ-calculus, we allow the following abbreviation
(also using ‘⇒’ as a sign for abbreviation):

λxy.(x+ y) ⇒ λx [λy (x+ y)]

If we adopt the convention that the body (the expression after the dot) extends as far to the right
as possible, this enables us sometimes to drop parentheses as below:

λxy.x+ y

The resulting λ-expressions are more concise. Of course, it is possible to use dot also with single
parameter lambda expressions:

λx.x2 + 2x+ 1

is the same as:
λx(x2 + 2x+ 1)

Currying

Currying can help us to create λ-expression with multiple parameters:

λx [λy (x+ y)]

If you apply two numbers to this lambda expression:

λx [λy (x+ y)] 3 1 ⇒ λy(3 + y) 1 ⇒ 3 + 1 ⇒ 4

λxy.(x+ y) ⇒ λx [λy (x+ y)]

λxy.x+ y ⇒ λx [λy (x+ y)]

(λabc. ax2 + bx+ c) 9 6 1 ⇒ 9x2 + 6x+ 1

So the dot convention is only abbreviation, it can be directly translated to pure λ-calculus. It is
here only for our convenience. Things revealed about pure λ-calculus hold also for the calculus
with extended syntax—and vice versa.

12

Currying

General rules:
λx1x2 . . . xn.E ⇒ λx1{λx2[. . . (λxnE) . . .]}

or, using the dot convention:

λx1x2 . . . xn.E ⇒ λx1.λx2 . . . λxnE

2.4 Abbreviations

Abbreviations (or syntactic suggar or macros) do not extend the original power of the core language.
They only introduce new (higher-level) constructs which can be, however, translated to the more
primitive constructs which in turns can be translated into more primitive constructs and so on
ultimately into the original core language. Abbreviations enable us to think in larger blocks.

They are very common in mathematics. Consider for example definition [8] of the macro

dom R

which gives us the one of the two projections of the binary relation R. It is defined as follows:

dom R ≡ {x : X; y : Y |x 7→ y ∈ R • x}

If we have this definition, we know how to expand the expression like the one on the left of the
definition to the expression on the right in the definition.

λ-expression can be quite large. To be able to program significant functions in λ-calculus, it is
convenient to have a way to attach names to λ-expressions. Therefore we allow rewrite rules of the
following form:

Abbreviations

• We can give names to λ-expressions.

plusp ⇒ λx. x ≥ 0
minusp ⇒ λx. x < 0

succ ⇒ λx.x+ 1
square ⇒ λx.x2

• reasons

13

• semantics

minusp (succ 2) ⇒ (λx. x < 0)(succ 2) ⇒ (λx. x < 0)[λxxx+ 1] 2]

These rules simply say, for example, that ‘plusp’ is an abbreviation for λ-expression ‘λx. x ≥
0’. It must be emphasized that these rewrite rules are not part of the λ-calculus, but simply
abbreviations that we use for talking about λ-expressions. Abbreviations introduced in this way
can always be eliminated by applying the rewrite rules until no abbreviations are left. As long as
this is understood, however, there is no reason that we can’t use rules introduced above directly in
reductions, as in the following example:

Abbreviations

minusp (succ 2) ⇒ (λx. x < 0)(succ 2)
⇒ (succ 2) < 0
⇒ (λx. x+ 1)2 < 0
⇒ 2 + 1 < 0
⇒ 3 < 0
⇒ false

Abbreviations and syntactic sugar could be regarded as macros which ultimately expand to pure
λ-expressions. For example the plusp above could be regarded as a macro (introduced by us for
convenience) which expands to λx.x ≥ 0.

3 Basic data-types

This section introduces various basic data-types to intuitively persuade reader that λ-calculus is
complete—i.e. it can be indeed used to write any algorithm.

3.1 Booleans

Booleans

We would like to use booleans (true and false) for branching as follows:

true t f ⇒ t

false t f ⇒ f

14

This leads us immediately to the following definitions:

true ⇒ λ tf. t

false ⇒ λ tf. f

if and not operation

Function enabling us to branch could be defined as:

if ⇒ λctf. ctf

We can check if indeed it behaves as it should behave:

if true a b ⇒ (λctf. ctf) true a b

⇒ true a b

⇒ a

Function ‘not’ should behave as follows:

not true ⇒ false

not false ⇒ true

This suggests the following definition:

not ⇒ λx . if x false true

and operation

Looking at the desired behavior of the and operation:

and true true ⇒ true

and true false ⇒ false

and false true ⇒ false

and false false ⇒ false

we can infer definition of the and operation as:

and ⇒ λxy. if x y false

15

or operation

Would you be able to guess the a definition of the or operation if it behaves as follows:

or true true ⇒ true

or true false ⇒ true

or false true ⇒ true

or false false ⇒ false

?

or operation

or ⇒ λxy. if x true y

equal operation

Since now we have complete system of logical connective, we can easily define other common logical
connectives:

imp ⇒ λxy. or (notx) y
nand ⇒ λxy.not (andx y)

nor ⇒ λxy.not (orx y)
equal ⇒ λxy. or [andx y] [and (notx) (not y)]

There are no problems with booleans.

3.2 Direct Product Types

We must find a way to represent tuples so that all the selectors and constructors of direct product
data types can be implemented. Since the λ-calculus is a calculus of functions, tuples must ulti-
mately be represented as functions of some form. Furthermore, our definition of tuples must be
based on the the facilities already defined: the pure λ-calculus and Booleans. How can these help
us? Recall that the most basic property of the selectors and constructors of tuples is that they
invert each other. Therefore letting pairx y represent the (curried) operation that constructs the
pair (x, y), we have

16

Direct Product of Types

T x UT U

pair

left right

equal

B

“Specification”

Recall that the most basic property of the selectors and constructors of tuples is that they invert
each other.

left (pairx y) = x

right (pairx y) = y

That is, the pair constructor must construct a pair in such a way that it is possible to recover
each of the two elements that went into the pair. Thus we need a way to select either of these
two elements. Our Boolean data type provides exactly this capability, since truex y ⇒ x and
falsex y ⇒ y. That is, (c x y) selects either x or y from the pair depending on whether c is true
or false. Therefore lets define the pair returned by pairx y to be a function that can return either
x or y depending on whether it is applied to true or to false:

pairx y ⇒ λc.cxy

For example, the tuple (1, true) is represented by the λ-expression λc.c 1 true. Hence the prototype
implementation of pair, left and right are: This leads us to:

Prototype implementation

pairx y ⇒ λxy.λc.cxy

left ⇒ λx.x true

right ⇒ λx.x false

17

Example:

left (pair AB) ⇒ left [(λxy.λc.cxy) AB]
⇒ left (λc.cAB)
⇒ (λx.x true)(λc.cAB)
⇒ (λc.cAB) true

⇒ trueAB

⇒ A

Exercise 8.15

Develop a prototype implementation of the equal operation for tuples: equalx y is true if and only
if x and y are the same pairs. Assume that you have operations equalσ and equalτ applicable to
the component types of the tuple.

equal ⇒ λxy. . . .

Solution of Exercise 8.15

equal ⇒ λxy.and (equalσ (leftx)(left y))
(equalτ (rightx)(right y))

Now I a bit fork from the original text of the book. On pages 376–377 they introduce new syntactic
abbreviation which enable them to to define new lambda expressions of the following form:

max ⇒ λ (x, y).if (x < y) y x

This is not a pure λ-expression because hitherto we only allowed ordinary identifiers to be formal
parameters of λ-expressions. It is not at all difficult to introduce this syntactic sugar but under the
time constrains we decided not to do so. Instead, where in the original text occur expression with
this syntactic sugar, we present them here in expanded (sugar-free) form. We hope that until now
the things were quite clear and we fear that with this obscurity things would not be that clear.

Further syntactic abbreviations

We skip here introduction of the following syntactic sugar:

18

λ (x, y) ⇒ E(x, y)

example

max ⇒ λ (x, y). if (x > y)x y

The above expression is not a pure λ-expression, but we can translate it to pure λ-expression.
When we show how to translate any similar expression to pure λ-calculus we could adopt the above
construct to our language while technically using the same old language (but maybe with a bit
more convenient syntax). We will skip introduction of this construct. It would take a time, we do
not have time and if it is not grasped properly, one can easily loose track of things.

3.3 Direct Sum of Types

Sometimes it is useful to represent the members of what is intuitively one abstract type by values
drawn from two or more concrete types (i.e. to make some kind of union of two types).

Direct Sum of Types

2nd −11st −1

1st 2nd

B

equal 1st?, 2nd?

T UT + U

Prototype Implementation

19

constructors, selectors, predicates

1st ⇒ λx.pair truex

2nd ⇒ λy. pair false y
1st−1 ⇒ λp. right p
2nd−1 ⇒ λp. right p

1st? ⇒ λp. left p
2nd? ⇒ λp. not 1st? p

The last operation could be more effectively expressed as:

2nd? ⇒ λp. not left p

3.4 Sequences

We can use direct product and direct sum of types for realizing prototype of sequences. Direct
product (i.e. couples) will be used for realizing “cons-cells”. Direct sum will be used for uniting
“anything meaningful” (of the first type) with “nil” (the only element of the second type). Sequences
could be defined as recursive data types [1, §5.3].

Signature of Sequences

constructors, selectors, predicates

T *

B

T
nil?

rest

prefix

first

nil

Sketch of Realization

20

2nd

2nd

1st

1st 2nd

1st

b

a a

< a >< > < a b >

Prototype Implementation

constructors, selectors, predicates

nil ⇒ 1st true

prefix ⇒ λxy. 2nd (pairx y)
first ⇒ λs. left (2nd−1 s)
rest ⇒ λs. right (2nd−1 s)
nil? ⇒ 1st?

Note that within the nil constructor could be just about any value. Eventually also the current
one—true.

Examples

nil? nil ⇒ 1st? nil
⇒ (λp.left p) nil
⇒ left nil
⇒ left (1st true)
⇒ left ((λx.pair true x) true)
⇒ left (pair true true)
⇒ true

Some steps where omitted.

Additional Syntactic Sugar

We could enrich the syntax of our language so that:

21

〈〉 nil
〈a〉 prefix a, nil
〈a, b〉 prefix a, (prefix b, nil)
〈a, b, c〉 prefix a, (prefix b, (prefix c, nil))

. . .

Examples

first 〈a, b, c〉 ⇒ a

rest 〈a, b, c〉 ⇒ 〈b, c〉
first (rest 〈a, b, c〉) ⇒ b

Some steps were omitted.

4 Auxiliary Declarations

It makes no sense to ask the value of an open expression, that is, an expression containing free
variables. Therefore any complete functional program must be closed: All its identifiers must be
bound.

Auxiliary Declarations

• it does not have sense to ask of an open expression

• each functional program must therefore be closed

When E is an expression with a single free variable and we want to evaluate it in a context where
v has value x we can do it as follows:

(λvE)x

In order to be able to express that clearly, dedicated syntactic sugar was introduced:

let v ≡ x in E ⇒ (λvE)x

22

Auxiliary Declarations in General

let v1 ≡ x1 and v2 ≡ x2 and . . . and vn ≡ xn in E ⇒
⇒ (λv1, v2, . . . , vn.E)x1x2 . . . xn

Evaluating an expression with a single free variable:

let x ≡ 10 in x+ 10 ⇒ (λx(x+ 10)) 5
⇒ 5 + 10
⇒ 15

Evaluating an expression with two free variables:

let x ≡ 10 and y ≡ 20 in x+ y ⇒ (λxy.(x+ y)) 10 20
⇒ 10 + 20
⇒ 30

5 Recursive Declarations

Our prototype definition of let does not permit recursive declarations.

The scope of ‘fac’ is ‘fac 4’, as can be seen by eliminating the syntactic sugar.

Recursive Declarations

How to define recursive functions?

How could we, for example, define function which computes the factorial of a given integer?

The first attempt:
λn.if[n = 0, 1, n× fac(n− 1)]

The second attempt:
let fac ≡ λn.if[n = 0, 1, n× fac(n− 1)] in fac 4

This seems promising until we try to reduce it:

⇒ (λ fac.fac 4) {λn.if[n = 0, 1, n× fac(n− 1)]}

There we see that we have a unbound variable fac there.

If in some imperative programming language we wanted to perform a given command S over and
over until some condition is met and we only had branching, we would need “infinite” flow-charts:

23

Recursive Declarations

Recursion in λ-calculus must be expressed completely differently because here we have no global
function names. Only λ-expressions.

It seems as if we (in order to define a recursive function) needed λ-expression of infinite length:

ϕ ≡ {λn.if [n = 0, 1, n× {λn.if [n = 0, 1, n× {λn.if [n =
0, 1, n× . . . (n− 1)]}(n− 1)]}(n− 1)]}

It is possible to observe certain some kind of “copying pattern” there.

An infinite formula is not much use to us because we cannot write it down; we can only write down
approximations of it. For example, the following are approximations of the formula ϕ:

Recursive Declarations

The “copying pattern”:

ϕ−1 ≡ ⊥
ϕ0 ≡ λn. if [n = 0, 1, n× ϕ−1(n− 1)]
ϕ1 ≡ λn. if [n = 0, 1, n× ϕ0(n− 1)]
ϕ2 ≡ λn. if [n = 0, 1, n× ϕ1(n− 1)]
ϕ3 ≡ λn. if [n = 0, 1, n× ϕ2(n− 1)]
ϕ4 ≡ λn. if [n = 0, 1, n× ϕ3(n− 1)]

...
ϕ∞ ≡ .

• ϕ−1 is not able to compute factorial of any integer.

• ϕ0 is able to compute factorial of a single integer 0.

• ϕ1 is able to compute factorial of integers 0 and 1.

• ϕ2 is able to compute factorial of integers 0, 1 and 2.

• ϕ3 is able to compute factorial of integers 0, 1, 2 and 3.

• ϕ4 is able to compute factorial of integers 0, 1, 2, 3 and 4.

• . . .

• ϕ∞ (a λ-expression of infinite length) would be able to compute factorial of any integer.

24

But, “infinite” flow-charts would need that our source code would have an infinite number of bytes
and that wouldn’t be compilable. Each program should have finite source-code (or flow-chart or
some analogous representation). Fortunately, in imperative programming we have cycles which
eliminate the need for (possibly) infinite programs.

However, recall that there were so called “non-normalizable” λ-expressions. One of them

[λx.F (xx)][λx.F (xx)]

is extremely interesting because it seem to “unfold forever”.

Recursive Declarations

The only way out is to use some kind of λ-expression which unfolds forever. We have already some
λ-expressions of that sort:

[λx(xx)][λx(xx)]

and
[λx.f(xx)][λx.f(xx)]

Let’s close the second λ-expression above as follows:

Y ⇒ λf. [λx.f(xx)][λx.f(xx)]

and thus:
Yf ⇒ [λx.f(xx)][λx.f(xx)]

One of its properties is that it is possible to expand expression Yf it in the following way:

Yf ⇒ f(Yf) ⇒ f(f(Yf)) ⇒ f(f(f(Yf)))

Recursive Declarations

Yf ⇒ f(Yf) ⇒ f(f(Yf)) ⇒ f(f(f(Yf)))

Detailed reduction:

Yf ⇒ [λx.f(xx)][λx.f(xx)]
⇒ f {[λx.f(xx)][λx.f(xx)]}
⇒ f (f {[λx.f(xx)][λx.f(xx)]})
⇒ f (f (f {[λx.f(xx)][λx.f(xx)]}))

This way, we are able to express certain kind of “infinite expressions”.

25

Recursive Declarations

Now we can define recursive functions as follows:

fac ⇒ Y {λf.λn.if [n = 0, 1, n× f(n− 1)]}
fib ⇒ Y {λf.λn.if [or(n = 0, n = 1), 1, f(n− 1) + f(n− 2)]}

Recursive Declarations

Suppose that:
ψ ⇒ λf.λn.if (n = 0, 1, n× f(n− 1))

Computation of a factorial of number 0 (zero):

fac 0 ⇒ Yψ 0 ⇒
⇒ ψ(Yψ) 0 ⇒
⇒ λn.if (n = 0, 1, n×Yψ(n− 1)) 0 ⇒
⇒ if (0 = 0, 1, 0×Yψ(0− 1)) ⇒
⇒ 1

Recursive Declarations

Suppose that:
ψ ⇒ λf.λn.if (n = 0, 1, n× f(n− 1))

Computation of a factorial of number 1 (one):

fac 1 ⇒ Yψ 1 ⇒
⇒ ψ(Yψ) 1 ⇒
⇒ λn.if (n = 0, 1, n×Yψ(n− 1)) 1 ⇒
⇒ if (1 = 0, 1, 1×Yψ(1− 1)) ⇒
⇒ 1×Yψ(1− 1) ⇒
⇒ 1×Yψ 0 ⇒
⇒ 1× 1 ⇒
⇒ 1

We have reused the fact that we already know that Yψ 0 ⇒ 1. This made the actual reduction
shorter.

26

Recursive Declarations

Suppose that:
ψ ⇒ λf.λn.if (n = 0, 1, n× f(n− 1))

Computation of a factorial of number 2 (two):

fac 2 ⇒ Yψ 2 ⇒
⇒ ψ(Yψ) 2 ⇒
⇒ λn.if (n = 0, 1, n×Yψ(n− 1)) 2 ⇒
⇒ if (2 = 0, 1, 2×Yψ(2− 1)) ⇒
⇒ 2×Yψ(2− 1) ⇒
⇒ 2×Yψ 1 ⇒
⇒ 2× 1 ⇒
⇒ 2

Again, we have reused the fact that we already know that Yψ 1 ⇒ 1. This made the actual
reduction shorter.

Recursive Declarations

Suppose that:
ψ ⇒ λf.λn.if (n = 0, 1, n× f(n− 1))

Computation of a factorial of number 3 (three):

fac 3 ⇒ Yψ 3 ⇒
⇒ ψ(Yψ) 3 ⇒
⇒ λn.if (n = 0, 1, n×Yψ(n− 1)) 3 ⇒
⇒ if (3 = 0, 1, 3×Yψ(3− 1)) ⇒
⇒ 3×Yψ(3− 1) ⇒
⇒ 3×Yψ 2 ⇒
⇒ 3× 2 ⇒
⇒ 6

Again, we have reused the fact that we already know that Yψ 2 ⇒ 2. This made the actual
reduction shorter.

Recursive Declarations

Suppose that:
ψ ⇒ λf.λn.if (n = 0, 1, n× f(n− 1))

27

Computation of a factorial of number 4 (four):

fac 4 ⇒ Yψ 4 ⇒
⇒ ψ(Yψ) 4 ⇒
⇒ λn.if (n = 0, 1, n×Yψ(n− 1)) 4 ⇒
⇒ if (4 = 0, 1, 4×Yψ(4− 1)) ⇒
⇒ 4×Yψ(4− 1) ⇒
⇒ 4×Yψ 3 ⇒
⇒ 4× 6 ⇒
⇒ 24

Again, we have reused the fact that we already know that Yψ 3 ⇒ 6. This made the actual
reduction shorter.

Syntactic Sugar

If we have tools for expressing recursion, we can now make their utilization more convenient with:

let rec f ≡ x in B ⇒ let f ≡ Y(λf.x) in B

The following expression:

let rec fac ≡ λn. if [n = 0, 1, n× fac(n− 1)] in fac 4

expands to:
let fac ≡ Y (λ fac.λn. if [n = 0, 1, n× fac(n− 1)]) in fac 4

and this expands to:

(λ fac.fac 4) (Y (λ fac.λn. if [n = 0, 1, n× fac(n− 1)]))

Evaluation Strategy

Evaluation stratey decides which of the possible applications will be applied next.

• eager

• random

• lazy

Sufficiently wrong strategy could cause that some expressions will never be reduced to normal form
even if they have it.

28

6 Natural Numbers

Natural Numbers

N x N

B

Npred, succ

0, 1, 2, 3, 4, ...

pair

zero?

sum, prod

Our goal is to show the computational completeness of the λ-calculus—in particular, that the
primitives of a chosen concrete (pure) functional language can be implemented in the λ-calculus.
For this purpose we do not need an efficient implementation; any correct implementation will do.

Natural Numbers

Integer 5 in unary notation:

or it could be:

* * * * *

The essence of unary notation is that a number is represented by example; to indicate five we show
five things, with the understanding that the only relevant property is the number of things.

Since we have already defined sequences, we can translate these ideas directly into the λ-calculus.
For example, the number five can be represented by a sequence of any five things. Just as in unary
notation it doesn’t really matter what these things are, so we can use any convenient value; here
we use the value nil. Thus the number five is represented by a sequence of five nils:

〈nil, nil, nil, nil, nil〉

The number zero, of course, is represented by the sequence containing no NILs, that is, the null
sequence. This method works well for natural numbers.

29

Constructors, Operations and Zero Predicate

0 ⇒ 〈〉
1 ⇒ 〈nil〉
2 ⇒ 〈nil, nil〉
3 ⇒ 〈nil, nil, nil〉
4 ⇒ 〈nil, nil, nil, nil〉

...
zero? ⇒ . . .

succ ⇒ . . .

pred ⇒ . . .

Constructors, Operations and Zero Predicate

0 ⇒ 〈〉
1 ⇒ 〈nil〉
2 ⇒ 〈nil, nil〉
3 ⇒ 〈nil, nil, nil〉
4 ⇒ 〈nil, nil, nil, nil〉

...
zero? ⇒ λn.nil?n
succ ⇒ . . .

pred ⇒ . . .

Constructors, Operations and Zero Predicate

30

0 ⇒ 〈〉
1 ⇒ 〈nil〉
2 ⇒ 〈nil, nil〉
3 ⇒ 〈nil, nil, nil〉
4 ⇒ 〈nil, nil, nil, nil〉

...
zero? ⇒ λn.nil?n
succ ⇒ λn.prefix niln
pred ⇒ . . .

Constructors, Operations and Zero Predicate

0 ⇒ 〈〉
1 ⇒ 〈nil〉
2 ⇒ 〈nil, nil〉
3 ⇒ 〈nil, nil, nil〉
4 ⇒ 〈nil, nil, nil, nil〉

...
zero? ⇒ λn.nil?n
succ ⇒ λn.prefix niln
pred ⇒ λn. restn

Constructors, Operations and Zero Predicate

31

0 ⇒ 〈〉
1 ⇒ 〈nil〉
2 ⇒ 〈nil, nil〉
3 ⇒ 〈nil, nil, nil〉
4 ⇒ 〈nil, nil, nil, nil〉

...
zero? ⇒ λn.nil?n
succ ⇒ λn.prefix niln
pred ⇒ λn. restn

We could be more careful and define predecessor as:

pred ⇒ λn. if (zero?n,⊥, restn)

Addition

let rec sum (m,n) =
{
m if n = 0
succ (sum (m, predn)) otherwise

With less syntactic sugar:

let rec sum p =
{

left p if (right p) = 0
succ (sum (left p, pred (right p))) otherwise

. . .

References

References

[1] B. J. Maclennan, Functional Programming: Practice and Theory, Addison-Wesley, 1990.

[2] Wikipedia.
URL http://www.wikipedia.org

32

http://www.wikipedia.org

[3] D. E. Knuth, The Art of Computer Programming: Fundamental Algorithms, Vol. 1, Addison
Wesley, 1997.

[4] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.

[5] R. Milner, Communication and Concurrency, Prentice Hall, 1989.

[6] R. Milner, Communicating and Mobile Systems: The π-calculus, Cambridge University Press,
1999.

[7] V. Švejdar, LOGIKA, neúplnost, složitost a nutnost, Academia, nakladatelstv́ı České republiky,
2002.

[8] J. Woodcock, J. Davies, Using Z: specification, refinement, and proof, Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1996.
URL http://www.usingz.com

33

http://www.usingz.com

	Notions and properties of the -calculus
	Evaluation order independence
	Referential transparency
	Bound and free identifiers

	-calculus programming language basics
	Syntax
	Normal form
	Multiple Parameters
	Abbreviations

	Basic data-types
	Booleans
	Direct Product Types
	Direct Sum of Types
	Sequences

	Auxiliary Declarations
	Recursive Declarations
	Natural Numbers

