LISP ASQ
Part 5

Is the following function tail recursive?

(defun reverse-my (zoz)
(cond ((null zoz) nil)
(t (append (reverse-my (rest zoz))
(list (first zoz)))))
yes
no

Is the following function tail recursive?

(defun is-list (s-exp)
(cond ((atom s-exp) (eq s-exp nil))
(t (is-list (rest s-exp)))
))
yes
no

Is the following function tail recursive?

(defun factorial (n)

$$
\begin{aligned}
& \text { (cond }((=\mathrm{n} 0) 1) \\
& \quad\left((>\mathrm{n} 0)\left({ }^{*} \mathrm{n}(\text { factorial }(-\mathrm{n} 1))\right)\right)
\end{aligned}
$$

))
yes
no

Is the following function tail recursive?

(DEFUN NUM-ONE-EL (LST)
(COND ((NULL LST) 0)
((ONE-EL (FIRST LST)) (+ 1 (NUM-ONE-EL (REST LST)))) (((NUM-ONE-EL (REST LST)))))
yes
no

Is the following function tail recursive?

(DEFUN NO-NUM (SE)

(COND ((NUMBERP SE) NIL)
((ATOM SE) T)
(T (AND (NO-NUM (FIRST SE)) (NO-NUM (REST SE))))))
yes
no

Is the following function tail recursive?

(DEFUN EQUAL (SV1 SV2)

(COND ((ATOM SV1) (EQ SV1 SV2))
((ATOM SV2) NIL)
((EQUAL (FIRST SV1) (FIRST SV2))
(EQUAL (REST SV1) (REST SV2)))
(T NIL)))
yes
no

Define a function SUBST-NUM, which substitutes in a list of numbers all odd numbers by 0 and all even numbers by 1 on the top level in the list
(DEFUN SUBST-NUM (LST)
(COND ((NULL LST) NIL)
((AND (NUMBERP (FIRST LST) (ODDP (FIRST LST))))
(CONS O (SUBST-NUM (REST LST))))
(T (CONS 1 (SUBST-NUM (REST LST))))
))

Doplnit modre

How many conditions in COND form is necessary for the definition of function SUBST-NUM, which substitutes in a list of s-expressions all odd numbers by 0 and all even numbers by 1 on the top level in the list

2
3
4
5

Define a function SUBST-NUM, which substitutes in a list of s-expressions all odd numbers by 0 and all even numbers by 1 on the top level and deletes all other s-expressions
(DEFUN SUBST-NUM (LST)
(COND ((NULL LST) NIL)
((AND (NUMBERP (FIRST LST))
(ODDP (FIRST LST)))
(CONS 0 (SUBST-NUM (REST LST))))
((AND (NUMBERP (FIRST LST))
(EVENP (FIRST LST)))
(CONS 1 (SUBST-NUM (REST LST))))
(T (SUBST-NUM (REST LST)))
))
Doplnit modre

> Define a function SUBST-NUM-D, which substitutes in a list all odd numbers by 0 and all even numbers by 1 on the arbitrary level in the list, we suppose that the list contains on arbitrary level just numbers
> (DEFUN SUBST-NUM-D (SE)
> (COND ((ODDP SE) 0)
> ((EVENP SE) 1)
> ((ATOM SE) SE)
> (T (CONS (SUBST-NUM-D (FIRST SE))) <-Tuto poslednu asi ivmazat (SUBST-NUM-D (REST SE))))
>))

> Doplnit modre

