
Scala
10 000 foot view and it’s FP features

Functional and logic programming Aurel Paulovič May 2018

Scala language
● Heavily used in the industry (Twitter, LinkedIn, Apache Spark, Akka, …)
● Static strong typing
● Runs on JVM

○ Compiles to java bytecode
○ Interoperable with languages/libraries running on JVM

● Almost everything is an expression (i.e. has return value)
● Turing-complete type system

Scala syntax
● java-like
● def for method/function definition
● func(name: Type, name2: Type2): Type3
● Type inference
● No semicolons
● Sometimes can omit parentheses
● Sometimes can omit dots between instance.method invocation
● Lots of syntactic sugar
● No return

Scala OO features
● Everything is an object
● Classes
● Traits
● Singleton objects
● Inheritance polymorphism
● Method overloading
● Access modifiers
● Unified access
● Variance

○ E.g. is List[Dog] <: List[Animal]

Unified type hierarchy

OOP

Scala FP features
● Immutable references (values)
● Expressions
● Higher-order functions
● Case classes
● Pattern matching
● FP-style core library APIs

Variables vs values
● var = variable

○ Multiple assignments

● val = value
○ Single assignment

Expressions
● Result into a value
● Have result type

Higher-order functions
● Function can be assigned to a variable/value
● Function can take functions as arguments
● Function can return a function

Function assignment

Function as an argument

Function as a return value

Case class
● Immutable
● Automatically generated hashCode, equals, extractors, ...
● Uses structural comparison

Pattern matching

FP-style core library APIs
● Favour immutability (immutable collections, case classes, etc.)
● Higher-order functions
● Pure functions

Other Scala features
● Implicit parameters
● Implicit conversions
● Generics (parametric polymorphism)
● ...

What makes Scala a FP language?
● Scala is a hybrid language
● You can

○ do OOP in Scala
○ write imperative code
○ have side-effects

1. Functions as first-class citizens (function as value, argument, return value)
2. FP-style core APIs
3. Idioms
4. Community & libraries

What makes Scala a FP language?
1. Functions as first-class citizens (function as value, argument, return value)

● Easy syntax for function definition, lambdas, etc.
● Function composition
● Currying
● ...

What makes Scala a FP language?
1. Functions as first-class citizens (function as value, argument, return value)
2. FP-style core APIs

● Favour immutability
● Pure functions - no side effects
● Higher-order functions

What makes Scala a FP language?
1. Functions as first-class citizens (function as value, argument, return value)
2. FP-style core APIs
3. Idioms

● Instead of imperative constructs prefer functional constructs

Idioms

Idioms

What makes Scala a FP language?
1. Functions as first-class citizens (function as value, argument, return value)
2. FP-style core APIs
3. Idioms
4. Community & libraries

● Libraries for FP (scalaz, cats, monix, …)
● Scala-idiomatic FP-style APIs
● Push for advanced FP concepts (monads, type-classes, recursion schemes,

…)

Resources
● https://www.scala-lang.org
● https://github.com/lauris/awesome-scala
● https://www.manning.com/books/functional-programming-in-scala
● https://underscore.io/books/scala-with-cats/
● https://monix.io
● https://github.com/milessabin/shapeless

https://www.scala-lang.org
https://github.com/lauris/awesome-scala
https://www.manning.com/books/functional-programming-in-scala
https://underscore.io/books/scala-with-cats/
https://monix.io
https://github.com/milessabin/shapeless

