
Mind, computational theories of 
 
The computational theory of mind (CTM) is the theory that the mind can be understood as a 
computer or, roughly, as the ‘software program’ of the brain. It is the most influential form of 
‘functionalism’, according to which what distinguishes a mind is not what it is made of, nor a 
person’s behavioural dispositions, but the way in which the brain is organized. CTM underlies 
some of the most important research in current cognitive science, for example, theories of 
artificial intelligence, perception, decision making and linguistics. 
 
CTM involves a number of important ideas. (1) Computations can be defined over syntactically 
specifiable symbols (that is, symbols specified by rules governing their combination) possessing 
semantic properties (or ‘meaning’). For example, addition can be captured by rules defined over 
decimal numerals (symbols) that name the numbers. (2) Computations can be analysed into 
‘algorithms’, or simple step-by-step procedures, each of which could be carried out by a machine. 
(3) Computation can be generalized to include not only arithmetic, but deductive logic and other 
forms of reasoning, including induction, abduction and decision making. (4) Computations 
capture relatively autonomous levels of ordinary psychological explanation different from 
neurophysiology and descriptions of behaviour. 
 
1 Syntax, semantics and algorithms 
 
Crucial to understanding computational theories of mind (CTM) is the distinction between the 
syntax and the semantics of a symbol system. How symbols may be combined comprises the 
syntax of a system and what the symbols mean or name comprises its semantics. For example, 
consider three different notational systems for numbers: decimal numerals (‘1’, ‘2’, ‘3’,…), 
Roman numerals (‘I’, ‘II’, ‘III’,…) and binary numerals (‘1’, ‘10’, ‘11’,…). These different types 
of numerals name the same numbers (‘5’ names the same number as ‘V’ and ‘101’) but the rules 
for combining the numerals in calculations are very different. In other words, these systems each 
have a different syntax, but (approximately) the same semantics.  
 
When children learn arithmetic, they learn reliable rules, or ‘algorithms’, for computing 
syntactically with numerals (symbols) in ways that mirror their semantics (in particular, the 
arithmetical relations among the corresponding numbers). Children doing calculations with 
decimal numerals should get the same answers as a computer working in binary, but the 
algorithms each  uses look very different. 
 
An algorithm is a ‘mechanical’ step-by-step procedure operating on syntactically well-defined 
symbols in a way that captures relations among the things the symbols represent. Alan Turing 
developed a general account of algorithms, conceiving what are called ‘Turing machines’, 
perfectly mechanical computing devices that arrive at a determinate answer or ‘output’ to a 
question, given certain data or ‘input’ (see Turing machines). According to the influential 
‘Church-Turing thesis’ Turing machines can systematically compute anything that is intuitively 
‘computable’ (see Church’s thesis). This idea is the inspiration for much of the modern computer 
industry. CTM extends it to psychology: the suggestion is that all intelligent processes can be 
systematically decomposed into algorithms consisting of steps that can be executed by primitive 
processors of a machine. 



 
2 Primitive processors 
 
The specific architecture of a Turing machine involves a ‘tape’ consisting of an infinite number 
of individual cells and a ‘scanner’, whose primitive processes consist in registering whether it is 
scanning a ‘1’ or a ‘0’, and then moving left and right from cell to cell (see Turing machines). 
This is only one among many possible computational architectures. What is essential to a 
computer is merely that the primitive processes be realizable by some physical means or other. 
To make computational theories of mind (CTM) remotely plausible as an account of the human 
mind, we will think here in terms of the kinds of electrical devices that seem at least to be 
available in the human nervous system (but are also exploited in commercial computers). 
 
A good example of a primitive processor is a ‘gate’. An ‘and’-gate is a device that accepts two 
inputs and emits a single output. If both inputs are ‘1’s (that is, sum to 2), the output is a ‘1’; 
otherwise, the output is a ‘0’. An ‘exclusive-or’ (either but not both) gate is a ‘difference 
detector’: it emits a ‘0’ if its inputs are the same and it emits a ‘1’ if its inputs are different (or 
sum exactly to 1). 
 

 
 
This talk of ‘1’ and ‘0’ is a way of thinking about the ‘bi-stable’ states of computer representers: 
they are almost always in one or the other of two states; the in-between states are not exploited 
computationally. 
 
Using these gates, one could construct a binary ‘adder’ that operated according to the following 
rules of binary addition: 



 

 
The two digits to be added are connected both to an ‘and’-gate and to an ‘exclusive-or’-gate as 
illustrated. 
 

 
 
Consider figure 2a first. The digits to be added are ‘1’ and ‘0’, and they are placed in the input 
register (the top pair of boxes). The ‘exclusive-or’-gate sees different things, and so outputs a ‘1’ 
to the right-most box of the answer register (the bottom pair of boxes). The ‘and’-gate outputs a 
‘0’ except when it sees two ‘1’s, so it now outputs a ‘0’. In this way, the circuit computes ‘ ’. For 



this problem, as for ‘ ’ and ‘ ’, the ‘exclusive-or’-gate does all the real work. The role of the 
‘and’-gate in this circuit is ‘carrying’, which is illustrated in figure 2b. The digits to be added, ‘1’ 
and ‘1’, are again placed in the top register. Now, both inputs to the ‘and’-gate are ‘1’s, so the 
‘and’-gate outputs a ‘1’ to the left-most box of the answer (bottom) register. The ‘exclusive-or’-
gate puts a ‘0’ in the right-most box, and so we have the correct answer, ‘10’. 
 
3 Syntactic engines 
 
The key idea behind the adder is that of a mirroring, or an isomorphism, between syntactic 
relations among numerals and their semantics, namely the relations among the numbers the 
numerals represent (see §1 above). This idea need not be confined to arithmetic. In their 
development of modern ‘formal’ logic, Frege and Russell showed how deductive logic can be 
formalized: that is to say, it can be characterized in terms of syntax, and this syntax can be 
characterized in terms of the physical form of sentences that receive a systematic semantic 
interpretation. In particular, it can be shown that a certain set of syntactically and formally 
specifiable rules is adequate to capture a significant class of deductively valid arguments (see 
Formal languages and systems). 
 
Ordinarily, sentences in logic are manipulated by people consciously following explicit rules, 
such as modus ponens, that are defined over their syntactic form, and it is often feared that CTM 
is committed to ‘homunculi’ in the brain executing the rules. However, the rules could also be 
obeyed by a Turing machine or, alternatively, a machine constructed along the lines of our simple 
adder: for example, whenever the machine detected sentences of the form ‘P’ and ‘ ’ as input, it 
could print ‘Q’ as output, thereby obeying modus ponens. In general, Turing showed that there 
could be a sequence of physical processes that realized any finite piece of deductive reasoning 
simply as a consequence of its physical organization. Consequently, one’s reasoning could be in 
accordance with the rules of logic, not by virtue of someone representing and following them, but 
as a result of the causal organization of the brain. This is what is meant by the expression a 
‘syntactic engine driving a semantic one’ (see Fodor 1975, 1980; Newall 1980). As Dennett 
(1975) put it, intelligent processes are broken down into separate processes so stupid that a mere 
machine could execute them.  
 
Note that, although the machine’s operations can be defined without mentioning the meaning of 
symbols, this does not entail that the symbols are meaningless, any more than the fact that 
bachelors are defined without reference to hair entails that bachelors are bald. Indeed, 
computations are standardly defined over symbols that are presumed to have some meaning or 
other (a point often missed by critics of CTM such as Searle (1984: 33); see Chinese room 
argument).  
 
How do symbols in computers acquire meaning? In the case of most artificial computers, their 
semantics are pretty much whatever their designers say they are. However, this might not always 
be so: philosophers have proposed a wide variety of conditions, involving both the internal states 
of a system, and their (for example, causal and co-variant) relations to external phenomena, that 
arguably would provide natural conditions for the states of a machine - or of an evolved animal 
like ourselves - having specific meanings (see Semantics, informational; Semantics, teleological; 
Semantics, conceptual role). These theories could provide semantic interpretations for the 
syntactic states postulated by CTM.  



 
4 Other forms of reason 
 
Deductive arguments were the inspiration, and remain the clearest success, for CTM. Similar 
hopes are entertained by many philosophers and cognitive scientists for a logic of induction, 
abduction, practical reason and decision making (see Inductive inference; Inference to the best 
explanation; Rationality, practical). The following affords an extremely simple example of what 
they have in mind. 
 
Imagine that a computer is provided with programs that perform operations on sentences in a 
formal language like that of modern symbolic logic, and that it is supplied with certain 
hypotheses, say, about circles and squares, to which it assigns certain initial probabilities. A 
video camera presents it with some inputs that directly cause it to access those hypotheses, 
deducing from each of them, one by one, the consequences regarding the character of the input 
that would be expected if the hypothesis were true. These consequences are compared in each 
case with the actual input that is received, and that hypothesis is ‘accepted’ which satisfies some 
threshold value of a function of the initial probabilities and the highest degree of fit between its 
consequences and that input. 
 
Imagine also that the machine is capable of performing certain basic actions: for example, 
whenever certain sentences (for example, ‘Move right!’) are in certain  ‘command’ registers, then 
its ‘arms’ (say) are caused to move in a corresponding way. And suppose that the sentences that 
end up in these command addresses are the result of a program that spells out familiar decision-
theoretic reasoning (‘If more squares are wanted, and the probability of getting some by moving 
right is greater than by moving left, then move right’) that are applied to an arbitrary set of basic 
preferences that are wired into the machine (say, that it prefers to replicate squares and obliterate 
circles). 
 
If the machine now operated according to these programs, its actions would seem to be 
explainable along familiar mentalistic lines. Although reasoning in most animals is massively 
more complex than this, these programs would seem to capture what is essential to such 
processes as perception, hypothesis testing, belief, desire and decision making. That, at any rate, 
is the claim of CTM. 
 
5 Gödel’s incompleteness theorem 
 
It is often thought that Gödel’s famous ‘incompleteness’ theorem, which proved that no formal 
system can prove all the truths of arithmetic (see Gödel’s theorems §§3-4), showed that the 
human mind cannot be a computer, and that CTM must therefore be false (see Lucas 1961; 
Penrose 1989). After all, Gödel appreciated the truth of the very sentences he is supposed to have 
proved to be unprovable!  
 
There are a great many problems in this reasoning (for a start, CTM is not committed to all 
reasoning being deductive), but perhaps the most basic one arises from not appreciating the 
essentially disjunctive character of Gödel’s theorem: what he proved was that either a formal 
system of arithmetic was inconsistent or it was incomplete. If people managed to do something 
that counted as proving the relevant undecidable sentence for their own system of arithmetic, they 



would do this at the expense of no longer being consistent: a contradiction could now be derived 
from their axioms. But this would not be a particularly remarkable fact: they would not explode 
or die. They would simply be disposed to believe a contradiction (a disposition many of us 
possess already). It is true that there are things no machine can do, namely, prove all the truths of 
arithmetic without contradicting itself; but it has yet to be established that any human being can 
do them either (see Putnam 1960; Lewis 1969, 1979). 
 
6 Different modes of computation 
 
There are many different ways in which computations can be carried out. Along lines closest to 
the original computers described here, there are the ‘classical’, ‘symbolic’ approaches that 
typically involve a ‘language of thought’ that is encoded and manipulated in the hardware of the 
computer (see Fodor 1975; Newall 1980; Language of thought). But more recently there have 
emerged ‘non-symbolic’, ‘connectionist’ approaches that eschew sentence-like structures, and 
exploit networks of interconnected cells subject to varying degrees of excitation (see, for 
example, Churchland and Sejnowski 1992; Connectionism). However, the two approaches need 
not be exclusive: through ingenious encoding, connectionist programs can be (and standardly are) 
run on computers constructed along classical lines, and vice versa. This is why one cannot tell 
simply by looking at the physical architecture of the brain whether the mind ‘really’ has a 
classical or connectionist ‘cognitive architecture’. 
 
7 Different explanatory levels 
 
This last point highlights an issue central to computational approaches to the mind: that there may 
be many different explanatory levels for describing the brain (see Explanation). Note, for 
example, that what is essential to the success of the computations of even our little adder (see 
§§2-3 above) does not depend upon the gates being realized electronically. An indefinite variety 
of devices (composed of pipes of water, or of mice in traps) could obey the same rules. Two 
primitive processors (such as gates) count as computationally equivalent if they have the same 
input-output function, that is, the same actual and potential behaviour, even if one works 
hydraulically and the other electrically. So CTM describes the organization of the brain at a level 
that abstracts from most of its biology. 
 
This is not to say that the computer model is incompatible with a biological approach. Sometimes 
important information about how a computer works could be gained by examining its circuits. As 
Lycan (1981) emphasizes, there may well be indefinitely many different levels of description and 
explanation of a system’s processes, within both CTM and biology itself. 
 
CTM is thus a paradigm of a functionalist approach to the mind, whereby mental states are 
individuated by their role in an organization (see Functionalism). Unlike dualism and 
physicalistic reductionism, it is not committed to any particular claims about the substance out of 
which minds might be composed. But, unlike behaviourism, CTM is not entirely indifferent to 
what goes on inside the head. 
 
In particular, although computational equivalence of primitive processors is defined in terms of 
their input and output, the equivalence of non-primitive devices is not. Consider two multipliers 
that work via different programs. Both accept inputs and emit outputs only in decimal notation. 



One of them converts inputs to binary, does the computation in binary, and then converts back to 
decimal. The other does the computation directly in decimal. These are not computationally 
equivalent multipliers despite their identical input-output functions. Thus, not only might 
creatures made of different stuff have the same mental lives, but behaviourally indistinguishable 
creatures might have very different ones. 
 
See also: Artificial intelligence; Chinese room argument; Cognitive architecture; Vision 
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Artificial intelligence 
 
Artificial intelligence (AI) tries to make computer systems (of various kinds) do what minds can 
do: interpreting a photograph as depicting a face; offering medical diagnoses; using and 
translating language; learning to do better next time. 
 
AI has two main aims. One is technological: to build useful tools, which can help humans in 
activities of various kinds, or perform the activities for them. The other is psychological: to help 
us understand human (and animal) minds, or even intelligence in general. 
 
Computational psychology uses AI concepts and AI methods in formulating and testing its 
theories. Mental structures and processes are described in computational terms. Usually, the 
theories are clarified, and their predictions tested, by running them on a computer program. 
Whether people perform the equivalent task in the same way is another question, which 
psychological experiments may help to answer. AI has shown that the human mind is more 
complex than psychologists had previously assumed, and that introspectively ‘simple’ 
achievements - many shared with animals – are even more difficult to mimic artificially than are 
’higher’ functions such as logic and mathematics. 
 



There are deep theoretical disputes within AI about how best to model intelligence. Classical 
(symbolic) AI programs consist of formal rules for manipulating formal symbols; these are 
carried out sequentially, one after the other. Connectionist systems, also called neural networks, 
perform many simple processes in parallel (simultaneously); most work in a way described not 
by lists of rules, but by differential equations. Hybrid systems combine aspects of classical and 
connectionist AI. More recent approaches seek to construct adaptive autonomous agents, whose 
behaviour is self-directed rather than imposed from outside and which adjust to environmental 
conditions. Situated robotics builds robots that react directly to environmental cues, instead of 
following complex internal plans as classical robots do. The programs, neural networks and 
robots of evolutionary AI are produced not by detailed human design, but by automatic evolution 
(variation and selection). Artificial life studies the emergence of order and adaptive behaviour in 
general and is closely related to AI. 
 
Philosophical problems central to AI include the following. Can classical or connectionist AI 
explain conceptualization and thinking? Can meaning be explained by AI? What sorts of mental 
representations are there (if any)? Can computers, or non-linguistic animals, have beliefs and 
desires? Could AI explain consciousness? Might intelligence be better explained by less 
intellectualistic approaches, based on the model of skills and know-how rather than explicit 
representation? 
 
1 Historical beginnings 
 
Artificial intelligence (AI) researchers make two assumptions. The first is that intelligent 
processes can be described by algorithms (sometimes called ‘effective procedures’), which are 
rules where each step is so clear and simple that it can be done automatically, without 
intelligence. This is an empirical hypothesis, which some critics of AI accept (Searle, in Boden 
1990: ch. 3) and others reject (Penrose 1989). The second is that all algorithms can be 
implemented on some general-purpose computer. This assumption is generally accepted. It is 
based on the Church-Turing thesis, which states that a universal Turing machine, to which 
general-purpose computers are approximations, can compute any algorithmically computable 
function (see Church’s thesis; Turing machines). 
 
The best-known types of AI - classical AI and connectionism - share these two assumptions. But 
they differ in other ways (see §§2-4). Classical AI involves serial, or one-by-one, processing of 
(sometimes complex) formal instructions, whereas connectionism involves parallel, or 
simultaneous, processing among many simple units. Classical computation uses programs made 
up of formal rules to generate, compare and alter explicit symbol structures (see Mind, 
computational theories of; Language of Thought). Connectionist computation typically uses 
numerical (statistical) rules to determine the activation within networks of locally interacting 
units and, in systems that can learn, to alter the firing thresholds of individual units and the 
(excitatory or inhibitory) ‘weights’ on their interconnections. The system’s ‘knowledge’ is 
contained implicitly in the constellation of connection weights (see Connectionism). Some 
philosophers uuse ‘computation’ to apply only to the classical type, first defined by Turing in 
1936. AI researchers themselves normally use the term to cover both kinds of information 
processing. 
 



Despite their differences, both these types of AI started from the same source: a seminal article 
written in 1943 by McCulloch and Pitts (Boden 1990: ch. 1). This discussion of ‘A Logical 
Calculus of the Ideas Immanent in Nervous Activity’ integrated three powerful ideas of the early 
twentieth century: propositional logic, the neuron theory of Charles Sherrington, and Turing 
computability. 
 
The authors showed that simple combinations of (highly idealized) neurons could act as ‘logic 
gates’. For instance, a McCulloch-Pitts neuron with two inputs could fire if and only if both 
inputs were firing (an ‘and’-gate), or if only one input were firing (an ‘or’-gate), or if some 
specific input were not firing (a ‘not’-gate). Since every truth-function can be expressed with 
‘not’ and ‘or’ alone, McCulloch and Pitts were able to show that every function of the 
prepositional calculus is realizable by some neural net; that every net computes a function that is 
computable by a Turing machine; and that every computable function can be computed by some 
net. Their work inspired early efforts in both classical and connectionist AI because they 
appealed to logic and Turing computability, but described the implementation of these notions as 
a network of abstractly defined ‘neurons’ passing messages to their neighbours. 
 
The neural networks discussed in this entry were extremely simple. For example, any link always 
had the same amount of influence, whereas most modern connectionist systems allow for 
continuous changes in the weight of each connection. But the authors’ theoretical ambitions were 
vast. Perception, reasoning, learning, introspection, motivation, psychopathology and value 
judgments: all, said McCulloch and Pitts, could in principle be understood in their terms. The 
whole of psychology would in future consist of the definition of various kinds of nets capable of 
doing the things minds do - that is, capable of computing the sorts of things which minds 
compute. Neurophysiology and neuroanatomy would show how networks are implemented in the 
brain, but psychology would define their logical-computational properties. Their views on the 
relation between psychology and physiology (or mind and body) anticipated later developments 
in the philosophy of mind (see Functionalism). 
 
McCulloch and Pitts’ 1943 paper made AI possible in three ways. It influenced von Neumann, in 
designing the digital computer, to use binary arithmetic and binary logic (see Neumann, J. von). 
It gave both psychologists and technologists the confidence to model propositional (symbolic) 
reasoning, as opposed to only arithmetical calculation, on logic-based computers. And it inspired 
people to start studying the computational properties of various types of neural network. 
Although classical and connectionist AI are often described as utterly distinct paradigms, 
research in both these approaches commenced because of this paper. 
 
Early connectionist work was further encouraged by McCulloch and Pitts in a paper of 1947. 
They pointed out that the brain is a parallel-processing device, not a sequential one. Moreover, it 
can function acceptably even when some cells misfire or die, or when the input signal is ‘noisy’. 
The perfect input data assumed within their first paper are, in real life, neither necessary nor often 
available. The question arises, then, how we (and animals) manage without them. McCulloch and 
Pitts described a statistical technique, based on differential equations like those of 
thermodynamics, whereby a parallel-processing system could compute (learn to distinguish) 
various patterns despite slight variations in the input. These (statistical) ideas were less 
biologically unrealistic than their earlier (logic-based) discussion. Nevertheless, the 1947 paper 



was less influential over the next three decades than their earlier work. Only in the 1980s did 
statistical, parallel-processing models achieve prominence (see §3 below). 
 
2 Classical AI 
 
Classical AI is the best-known type of AI, and is sometimes called traditional AI. It uses 
sequential programming (do this, then do that), and employs internal representations of lists, 
semantic networks, arrays and other information-processing structures. These representational 
structures and their components are interpreted as symbolic representations of propositions and 
concepts (or beliefs and ideas). Accordingly, this approach is also called symbolic AI. 
 
Most internal representations in classical AI are language-like, being constructed from 
components each of which has some distinct causal-semantic role (though just which role may 
vary according to context). Some philosophers, such as Jerry Fodor, explain human mental states, 
or propositional attitudes, in terms of a hypothetical ‘language of thought’ having logical 
properties (compositionality, productivity, systematicity) like those exploited in classical AI (see 
Fodor, J.A.; Language of thought). A ‘toy’ example of one simple type of classical AI program (a 
production system) might look something like this: 
 
If thirsty then set goal to drink. 
If current goal is drink and weather is cool then set goal to seek kettle. 
If current goal is seek kettle and not in kitchen then go to kitchen and locate kettle. 
If kettle is empty then fill kettle with water. 
If kettle is full then put kettle on hob and heat hob and locate teapot. 
(and so on) 
 
As this toy example suggests, every action, and every condition for action, has to be explicitly 
specified. Actions that undo previous actions (such as emptying the kettle you just filled) must be 
avoided. Some unintended consequences of actions have to be anticipated and tidied up (turn off 
the hob). Default steps must be specified in case any precondition is not satisfied (hot weather, 
not thirsty). Goal-subgoal structure must be recognized, and the program must be able to ‘pop up’ 
to the top goal-level when the lowest sub-goals have been achieved or abandoned. Moreover 
(what the toy program does not show), procedures must be provided for carrying out the tests (is 
it cool, and is the kettle full?) and for executing the lowest-level actions (going to the kitchen, 
locating and filling the kettle) (see Rationality, practical). 
 
Classical AI modelling is widespread in computational research. It is used to study, for example, 
problem solving, planning, vision, robotics, learning, natural-language understanding, analogy 
and the perception and performance of music (Boden 1987, 1988, 1990; Rich and Knight 1991). 
It is applied also to phenomena often assumed to be intractable for a computational (or even 
scientific) explanation, such as motivation, emotion and creativity. 
 
Among the advantages of classical AI are its ability to represent hierarchical structure and to 
provide relatively transparent models (whose workings can be well understood by inspecting the 
program). A further advantage is that it can define ‘strong’ (exceptionless) problem constraints. It 
is sometimes forgotten, especially by proponents of connectionism, that strong problem 
constraints are often needed. For instance, every sentence must have a noun phrase and a verb 



phrase; and waltz time in music demands that each bar have exactly three beats. Admittedly, a 
composer may produce some anomalous bars (for example, having only two beats in the upper 
voice along with three in the lower); but one cannot keep doing this, or break out into march 
time, without abandoning the goal of composing a waltz. Nor can one communicate intelligibly if 
one omits most noun phrases. Given that certain rules are mandatory, an AI system should 
respect them, not approximate them by blurring them with others. 
 
Although it began no earlier than connectionism, classical AI achieved visible success before 
parallel-processing models did. The first major successes occurred in the 1950s. The logic 
theorist and general problem-solver of Newell and Simon introduced ‘means-end analysis’, 
wherein a program analyses the problem as a hierarchy of goals and sub-goals (on indefinitely 
many levels) and chooses the action most likely to reduce the difference between the current state 
and the desired state (the goal). This method was widely adopted in theorem proving, problem 
solving and planning. Another early landmark was Samuels’ draughts (checkers) player, which 
played well and even learned to adapt to its opponent’s individual style. And early language-
using programs used stored English word strings and simple linguistic schemata to conduct 
‘conversations’ in which the human interlocutors were occasionally (if briefly) persuaded that 
they were interacting with another person. (See Feigenbaum and Feldman 1963.) 
 
By the early 1970s there had been considerable advance. For instance, natural-language 
processing could now be sensitive to highly complex syntactic structure or to the unspoken 
assumptions hidden in the semantics underlying the actual words - so that programs could 
‘answer’ questions about things not explicitly mentioned. Machine learning was sometimes 
achieved through the program’s having a model not only of the task domain but also of its own 
action strategies - which, with experience, it modified. Other advances followed. Various high-
level AI programming languages were developed, such as LISP (‘list-processing language’) and 
PROLOG (‘programming in logic’). And Newell and Simon developed ‘production systems’, a 
programming method based on if-then (condition-action) rules: if the condition is satisfied, then 
the action is taken. The condition may be a complex conjunction or disjunction, including 
(sometimes) a statement of the system’s current goal; similarly, the action may be complex 
and/or internal (see the toy AI program above). These developments affected both technological 
and psychological AI. Production systems, for instance, are the core of most ’expert systems’, but 
were originally proposed as a model of human thinking. (An expert system is an AI program 
consisting of a set of ‘If… then’ rules, which can be used to aid human beings in solving 
specialist problems such as locating oil, planning a travel itinerary or diagnosing a disease.) 
 
3 Classical AI and human thinking 
 
Traditional AI began with the assumption that symbolic logic is a normative model for both 
human and automated reasoning (see Common-sense reasoning, theories of). This assumption sits 
well with some forms of reasoning, such as theorem-proving (although even there, human beings 
sometimes employ non-logical methods, such as imagery and analogy). But most human 
reasoning is approximate and qualitative. We can understand speech even when it is 
ungrammatical, heavily accented and partly obscured by noise; and we can recognize imperfect 
handwriting, shadowy scenes, and perceptual or linguistic analogies of many kinds. Also, we can 
use world knowledge in solving logical problems and in deciding whether strictly logical 
reasoning, as opposed to fallible heuristics based on experience, is appropriate in a given case. 



For example, even teachers of logic can solve a problem concerning rules of postage (reversing a 
minimum number of envelopes to inspect the postage stamps) more easily than a problem of 
identical logical form posed in abstract terms. In short, we have common sense (see Rationality 
of belief; Common-sense reasoning, theories of). 
 
Work in AI has increasingly focused on common-sense reasoning, not least because classical AI 
systems tend to be ‘brittle’. If data are missing or corrupted, a classical AI program may give an 
absurd answer, or none at all. For example, a story-writing program may allow a character to 
drown a few feet away from a potential rescuer on the river bank, because the programmer did 
not explicitly include the information that one is normally able to see whatever is going on in 
front of one’s eyes. Similarly, an expert system might ask whether a particular three-year-old girl 
has any children, not knowing that pre-pubertal girls cannot conceive. People know many such 
facts about the world and often give something near the right answer (a good guess) even when 
they lack some relevant information. So AI research has studied probabilistic reasoning, non-
monotonic logic (where not-p may turn out to be true even though p had been proved earlier), 
case-based or analogical explanation, deep (causal) reasoning, and common-sense semantic 
networks and belief systems (see Non-monotonic logic). As these new methods are incorporated 
into classical AI programs, the brittleness typical of first-generation AI models (for example, the 
rule-based ‘expert systems’ used by many commercial and public institutions) should be reduced. 
 
To reduce brittleness, however, is not to avoid it entirely. Some critics believe that classical AI 
methods will never model everyday human thinking. A leading AI logicist has recently recanted 
(McDermott, in Boden 1990: ch. 9). Classical AI has been criticized also by philosophers who 
reject the Platonist assumption that all truths are analysable in terms of formalizable elements 
(Dreyfus 1979). Some philosophers see connectionism as immune to philosophical critiques of 
classical AI (see §3 below), while others regard it as acceptable only up to a point (Dreyfus and 
Dreyfus, in Boden 1990: ch. 13). 
 
For AI to be deeply relevant to theoretical psychology and the philosophy of mind, it need not 
promise actual replication of all human behaviour. So someone (such as Fodor) who propounds a 
computational philosophy of mind may, without contradiction, doubt whether AI systems could 
ever in practice achieve more than a tiny fraction of human behaviour. Nor need AI researchers 
themselves believe in this possibility. They may allow that certain behaviour cannot, in principle 
or in practice, be replicated by AI (of any type). Moods, for instance, may be unreplicable in 
principle, and superb novel-writing may be unachievable in practice. 
 
Even AI workers who do believe that full replication is possible need not accept the Turing test 
(see Turing, A.M. §3) as their criterion of intelligence. They all allow that a non-mental thing 
could sometimes fool us into thinking it intelligent; indeed, this happened so often with ELIZA, 
an early language-using program, that this user illusion is called the ‘ELIZA effect’. And some, 
for example, argue that mere replication of behaviour, without evolutionary descent of the 
underlying causal mechanisms, would not suffice for true understanding. 
 
One well-known philosophical critic of AI, especially (though not exclusively) in its classical 
form, is John Searle (see Boden 1990: ch. 3; Chinese room argument). Searle argues that even if 
an AI model passed the Turing test (which he thinks is in principle possible), it would not really 



be thinking, or understanding, anything. Correlatively, a computational psychology could not 
explain how we can understand: at best, it could explain what we do with meanings once we have 
them. He argues that programs are defined purely syntactically (by formal rules defined over 
formal constituents), whereas intentionality - or meaning - involves more than mere syntax. 
Searle’s argument has been challenged in many ways by philosophers and AI scientists, and 
remains controversial. Most opponents accept his assumption that computation is purely 
syntactic, disagreeing with him on other grounds. However, this assumption is also controversial 
(see Boden 1990: ch. 4). The nature of computation - and its connection with meaning - is less 
clear, and less universally agreed, than Searle supposes (see Language of thought). 
 
More generally, many philosophical critiques - and defences - of AI turn on issues of semantics 
(not behavioural replication). But philosophical semantics is itself disputed. To speak of 
‘information processing’ is problematic, because the nature of information is controversial (see 
Semantics, informational). Similar remarks apply to symbol manipulation. Other connected 
issues include whether meanings are ‘in the head’ (semantic internalism) or partly constituted by 
the things to which they refer (externalism) (see Content: wide and narrow), and the relevance (if 
any) of evolution in establishing meaning (see Semantics, teleological). Even within AI, 
researchers give differing accounts of semantics (and not all AI workers subscribe to ‘strong AI’ 
as Searle defines it). Some, for example, accept a procedural semantics wherein the execution of 
particular computations, or mini-programs, suffices for particular meanings (see Semantics, 
conceptual role). Others see causal interaction with the external world (and even evolutionary 
history) as necessary for meaning. In short, the semantics of AI are controversial both within and 
outside the field. 
 
4 Connectionism and hybrid systems 
 
Connectionist models are parallel-processing systems, involving mutually interactive 
computations grounded in local interactions between connected units (see Connectionism). Each 
individual computation is much simpler than a typical instruction in a classical AI program. Even 
so, connectionist units and computations (and learning rules, if any) vary significantly. 
 
For instance, the semantic interpretation given to connectionist units by AI researchers differs. 
(This is true irrespective of philosophers’ theories about semantics, and the relation of AI and 
meaning.) Some connectionist units are described as computing the truth-values of entire 
propositions; others are intended to code familiar concepts. The representational role of these 
units is thus comparable to the rules and rule components in the toy AI program in §2 (however, 
connectionist systems cannot specify action hierarchies, like that outlined above for quenching 
thirst). Yet other connectionist units stand for detailed subsymbolic micro-features, which are not 
always expressible in terms of everyday concepts or symbols. Thus an input unit might code for a 
tiny patch of a highly specific (unnamed) shade of purple.  
 
The symbolic/subsymbolic distinction, so defined, is sometimes thought to distinguish (all) 
connectionist from (all) classical AI. This is a mistake. The distinction is vague: just which 
concepts count as everyday concepts? Moreover, not all connectionist systems employ 
subsymbolic processing, and many classical AI programs, especially in vision and natural-
language processing, code for subsymbolic microfeatures. The distinction is better defined in 
terms of the presence 



or absence of causally efficacious and semantically evaluable logical constituents. Such 
(symbolic) constituents typify classical AI. Subsymbolic units (in this sense) have no fixed, 
context-free interpretation, since their effect on processing varies according to the simultaneous 
activation of the other units. 
 
In the late 1950s and the 1960s, classical AI progressed faster than connectionism. None the less, 
some researchers persevered with early forms of connectionist modelling. But in 1969 Minsky - 
widely acknowledged as a father of classical AI, but also the first person to build a connectionist 
learning machine - proved surprising limitations on what very simple networks (‘perceptrons’) 
could compute (see Minsky and Papert 1969). Although he stated that more complex networks 
might be more powerful, there was a marked drop in interest in connectionist research. 
 
A few individuals within AI, and some in psychology and physics, worked on connectionist 
systems during the 1970s and early 1980s. But not until 1986 did connectionism attract 
substantial attention. In the late 1980s it hit the headlines and attracted attention from 
philosophers, being widely hailed as a new, all-powerful computing methodology. More 
accurately, one specific type of connectionism attracted attention (others being largely ignored): 
‘parallel distributed processing’ (PDP). In a distributed connectionist system, a concept is not 
stored by a single unit (as in localist connectionism). Rather, it is represented by a global pattern 
of activation spread across the entire network, many different units making some contribution. It 
may be impossible to assign a specific, context-free interpretation to a given unit. Moreover, no 
individual unit is either necessary or sufficient for the whole network to represent some particular 
concept (recognize some particular pattern). 
 
PDP models themselves vary in important ways. Not all employ subsymbolic processing, though 
most do. Some allow only for on-off variation in the activity of each unit, while others allow for 
continuous weights defining the unit’s influence. Not all PDP models can learn, though most can. 
Those which can learn employ various learning rules. The number of units can vary, with 
significant implications for the type of learning achievable. And although most PDP systems 
have only ‘feed-forward’ connections, passing from units nearer the input to units nearer the 
output, some have backward links also (called ‘back-propagation’). In general, PDP systems 
work by adjusting the simultaneous activity of the constituent units until some global equilibrium 
is reached (different concepts are represented by different equilibria within the same PDP 
system). This is achieved not by a sequence of symbolic rules, but by numerically described 
statistical processes like those of thermodynamics. The changing states of the system are 
described not as symbol structures (such as lists), but as numerical vectors. 
 
Because of their statistical design, PDP systems are better able than classical models to perform 
well despite noisy input, and to retrieve an entire memory given only a fragment. Some classical 
AI programs can do this too, up to a point, if specifically pre-programmed to do so. PDP models, 
by contrast, ‘naturally’ achieve a plausible end-state given partially conflicting evidence, 
weighing both strong and weak constraints (and the extent of their mutual coherence). That is, 
they perform multiple constraint satisfaction, where the information may be partially conflicting 
and/or missing. And PDP systems with learning rules (which change the activation weights on 
the connections with experience) can learn –as people can - from being shown a range of 
examples. 
 



PDP models are unlike real brains in many ways. For instance, the widely used back-propagation 
algorithm learns in a very un-biological fashion. Less neurophysiologically unrealistic forms of 
connectionism have been developed, but even these fall far short of neural networks in the brain. 
 
Another drawback of first-generation PDP systems is that, unlike classical AI programs, they 
cannot model hierarchical structure or sequential processing. Some types of human thinking - 
many aspects of language and problem-solving, for example - require both these features. Most 
AI researchers use only classical, or only connectionist, models. This sociological fact has 
encouraged some philosophers to exaggerate the differences, and the supposed superiority of one 
approach over the other. However, these AI methods have complementary strengths and 
weaknesses. Accordingly, there is growing interest in hybrid models, which try to get the best of 
both worlds. 
 
Various philosophers use connectionist ideas in addressing important philosophical problems. 
These include symbol grounding, the problem of how words and concepts acquire meaning 
(Cussins, in Boden 1990: ch. 15); the role of folk psychology in cognitive science (Clark 1989); 
family likenesses, paradigm cases, and prototypes of concepts (Clark 1993); eliminative 
materialism (Churchland, in Boden 1990: ch. 14); and scientific explanation (Churchland 1990). 
Many philosophers see affinities between connectionism and Wittgensteinian views of language, 
because connectionist representations are not cut and dried like those used in classical AI but 
allow for borderline cases and for varying degrees of similarity. 
 
5 Situated robotics and anti-representationalism 
 
Classical and connectionist AI share a commitment to internal representation as integral to 
intelligence. Both these approaches (and most cognitive scientists) posit identifiable data 
structures ‘in the head’ that are distinguishable from the system’s processing (which is done ‘on’ 
or ‘with’ them), and that stand for things in the world. This commitment has been 
(controversially) abandoned by AI work in situated robotics (Boden 1996; Maes 1991). Situated 
robotics is sometimes termed ‘nouvelle AI’ (in contrast to traditional AI), or ‘behaviour-based 
AI’ (in contrast to AI based on abstract task decomposition). It claims to be more biologically 
realistic than classical AI. It emphasizes ‘autonomous’ systems specifically adapted to their 
environment, not general-purpose computers controllable by many different programs. And it 
builds whole (sensory-motor) systems, rather than decomposing intelligence into distinct tasks 
(vision, planning, motor action) which then have to be integrated to provide a functioning robot. 
 
Situated robotics avoids using internal representations of the external (objective) world, although 
some systems use temporary representations of their own (subjective) place in or actions on their 
immediate environment. And it uses a bottom-up approach to generate complex behaviour. 
Because the environment is assumed to be noisy, dynamic and inconvenient, the detailed world-
modelling and top-down planning typical of classical AI are rejected. No complex program is 
involved to decide on, monitor and control the creature’s activities. Instead, the control of 
behaviour flows from the nature of the system itself, in the sense that the system is engineered 
(not programmed) to respond to environmental triggers in certain ways. By these means, 
researchers in situated robotics seek to avoid the notorious ‘frame problem’ (Boden 1990: chaps 
7-9). This problem bedevils AI work on robot planning, language understanding and common-
sense reasoning. It concerns foresight of the many intended and unintended consequences of 



action. For instance, if a box is moved across the floor then all its contents move also, whereas 
the chairs (and table and curtains) do not. A formal representation of action must explicitly allow 
for all the intended effects, or some may not happen. And the action’s many unintended effects 
will be wholly irrelevant only if the agent is very lucky, or very thorough in explicitly 
anticipating potentially relevant outcomes. 
 
Classical robots rely on planning, done within an internal world model. To avoid the frame 
problem, they must explicitly anticipate a host of intended consequences and unintended side-
effects. Although this exhaustive listing of consequences  is feasible in artificially impoverished 
environments, it is impractical in the real world (the thirst-quenching program in §2 would often 
lead to disappointment, because of unexpected facts about the house concerned). Moreover, 
because the real world cannot be relied on to remain unchanged, detailed anticipatory plans may 
fail on execution. Instead of manipulating complex internal representations of the world, situated 
robots deal directly with it. Situated roboticists eschew the abstract functional task-decomposition 
employed by classical AI. Instead, they analyse intelligence in terms of ‘behaviours’. Their 
robots engage in simple, hardwired behaviour triggered by specific, ecologically relevant, 
environmental cues. 
 
The anti-representationalist stance of nouvelle AI is controversial. Some situated robots use 
temporary representations that are not objective but ‘deictic’ (subject-centred), being closely 
bound to the robot’s behaviour in this place on this occasion (see Content, indexical). Admittedly, 
some situated robots – including . 
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Cognitive architecture 
 
Cognitive architecture involves the properties of mental structures and mental mechanisms that 
do not vary when people have different goals, beliefs, precepts or other cognitive states. A 
serious computational theory of mind (CTM) requires that the architecture be constrained 
independently of such states. One consequence of taking the distinction between architecture and 
representation-governed process seriously is that it provides a reply to those who are sceptical 
about the role of rules in cognition, on the grounds that following rules leads to an infinite 
regress: in CTM, rules are executed by the causal structure of the architecture, and hence do not 
require further rules for following rules. 
 
The notion of cognitive architecture in the context of the computational theory of mind (CTM) 
comes directly from the notion of computer architecture, which refers to the relatively fixed set of 
computational resources available to a programmer in designing a program for a given computer 
system. Among other properties, this includes the type of memory that the computer has, the way 
it encodes information (the system of symbolic codes or language it uses), the basic operations 
that are available, and the constraints on the application of these operations (as in serial v. parallel 
sequencing). The architecture is a functional characterization of the computer system on which 
the program runs (see Mind, computational theories of). 
 
It is important to bear in mind that computer architecture reflects the physical properties or 
‘hardware’ only indirectly, since the architecture visible to the programmer might itself be 
simulated in software or firmware. For this reason it is sometimes referred to as the ‘functional 
architecture’ or even as the ‘architecture of the virtual machine’. Someone writing a program in, 
say, LISP or C, has available the resources (operations, datastructures and programming 
constraints) of those languages and is not concerned with their physical instantiations: LISP or C 
in that caseis the architecture of the relevant virtual machine. 
 
In theories of cognition, the notion of architecture is particularly important because it represents 
the dividing line between cognitive and non-cognitive aspects of a model. In CTM, mental 
processes are modelled as computer programs, but the process of executing these programs itself 
lies outside the domain of CTM. What makes the computer model run, or generate token 
instances of behaviour, is the causal structure of the underlying computational mechanism, the 
computational architecture. 
 



The architecture of computational models was often taken for granted in modelling cognitive 
processes. In the 1950s, information-processing models were typically expressed in terms of 
whatever architecture was available or seemed intuitively reasonable - usually a so-called ‘von 
Neumann’ architecture which uses a serial fetch-execute computational regime and location-
addressable register memory. But in more recent years, under the influence of Simon and 
Newell’s literal interpretation of programs-as-theories (see Simon and Newell 1964; developed 
more fully in Newell 1990), it became clear that the assumptions one made about the underlying 
architecture strongly influenced which programs it could implement (not which functions it could 
compute, since with suitable external memory it could compute any computable function) and 
hence constituted a strong claim about the nature of mind. 
 
Mapping out the cognitive architecture in detail is important if the CTM is to provide a literal 
scientific hypothesis about the causes of cognitive behaviour. Programs can only be individuated 
relative to an architecture. According to the way in which computer scientists and cognitive 
scientists individuate programs, two different architectures cannot execute the same program, 
although the universality of such machines guarantees that (subject to memory requirements) 
they can compute the same function. The kind of ‘strong equivalence’ of computational models 
with mental processes that many cognitive scientists demand is not achieved just by providing a 
detailed characterization of the process in the form of a program. Because the form of such a 
program depends on the architecture on which it runs, the theory must specify an independently 
motivated architecture, including a specification of the representational system it uses. In such a 
fully articulated model the individual operations - as well as the symbolic expressions they 
operate over - the sequencing discipline that is imposed on the program execution, the memory 
constraints that it must adhere to, and so on, all constitute empirical claims. Only when one has 
independently specified both the architecture and the representations can one’s computational 
model lay claims to being ‘strongly equivalent’ to the cognitive process being modelled (see 
Pylyshyn 1984). 
 
In recent years there has been a great deal of debate about which class of architecture is the right 
one for modeling cognition. In particular there have been proposals that the class of 
computational architectures that operate over syntactic strings, as in the Turing machine or in 
proof theory, are inappropriate for modelling psychological processes (see Turing machines; 
Proof theory). Instead, some people have proposed so-called ‘connectionist’ or ‘neural net’ 
architectures, consisting of a network of simple threshold elements that compute certain functions 
(the precise class being unknown) by passing activation among the elements over weighted links 
(see Connectionism). Such networks, it is claimed, compute without reading or writing symbolic 
expressions. The debate raises the philosophic issue of whether mind can or should be modelled 
as a syntactic engine, computing in a ‘language of thought’, as is generally assumed in the CTM 
(see Fodor and Pylyshin 1988; Language of thought). 
 
Distinguishing architecture and representations (including representations of processes in terms 
of programs which run on that architecture) is important to the philosopher for a number of 
reasons (see Pylyshyn 1996). For one, it represents an attempt to understand the nature of the 
relatively fixed mental structures that instantiate psychological processes: the basic cognitive 
capacities of the mind within which representation-governed processes are instantiated. Some of 
these structures are likely to be universal and perhaps even innate (we put aside for now the issue 



of how architecture changes, except to note that it does not change in response to new knowledge 
- by definition it is not ‘cognitively penetrable’). 
 
Recognizing the role of architecture also helps to resolve a problem about rule following raised 
by Wittgenstein (1953): how is a system to know how to follow a rule? If by using another rule, 
this invites an infinite regress (see Wittgenstein, L. §10). In CTM the regress does not arise 
because the architecture executes the rules and it does not do this by using rule-following rules, 
but, instead, by virtue of its causal structure. In a computer we do not have to have algorithms for 
executing algorithms; instead the physical instantiation of the algorithm in the machine, together 
with the structure of the machine, simply causes the behaviour to unfold. The relevant abstract 
description of these causal-structural properties constitutes a description of the architecture of the 
system. 
 
See also: Computability theory; Language of thought; Modularity of mind 
ZENON W. PYLYSHYN 
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