
Mind, computational theories of

The computational theory of mind (CTM) is the theory that the mind can be understood as a
computer or, roughly, as the ‘software program’ of the brain. It is the most influential form of
‘functionalism’, according to which what distinguishes a mind is not what it is made of, nor a
person’s behavioural dispositions, but the way in which the brain is organized. CTM underlies
some of the most important research in current cognitive science, for example, theories of
artificial intelligence, perception, decision making and linguistics.

CTM involves a number of important ideas. (1) Computations can be defined over syntactically
specifiable symbols (that is, symbols specified by rules governing their combination) possessing
semantic properties (or ‘meaning’). For example, addition can be captured by rules defined over
decimal numerals (symbols) that name the numbers. (2) Computations can be analysed into
‘algorithms’, or simple step-by-step procedures, each of which could be carried out by a machine.
(3) Computation can be generalized to include not only arithmetic, but deductive logic and other
forms of reasoning, including induction, abduction and decision making. (4) Computations
capture relatively autonomous levels of ordinary psychological explanation different from
neurophysiology and descriptions of behaviour.

1 Syntax, semantics and algorithms

Crucial to understanding computational theories of mind (CTM) is the distinction between the
syntax and the semantics of a symbol system. How symbols may be combined comprises the
syntax of a system and what the symbols mean or name comprises its semantics. For example,
consider three different notational systems for numbers: decimal numerals (‘1’, ‘2’, ‘3’,…),
Roman numerals (‘I’, ‘II’, ‘III’,…) and binary numerals (‘1’, ‘10’, ‘11’,…). These different types
of numerals name the same numbers (‘5’ names the same number as ‘V’ and ‘101’) but the rules
for combining the numerals in calculations are very different. In other words, these systems each
have a different syntax, but (approximately) the same semantics.

When children learn arithmetic, they learn reliable rules, or ‘algorithms’, for computing
syntactically with numerals (symbols) in ways that mirror their semantics (in particular, the
arithmetical relations among the corresponding numbers). Children doing calculations with
decimal numerals should get the same answers as a computer working in binary, but the
algorithms each uses look very different.

An algorithm is a ‘mechanical’ step-by-step procedure operating on syntactically well-defined
symbols in a way that captures relations among the things the symbols represent. Alan Turing
developed a general account of algorithms, conceiving what are called ‘Turing machines’,
perfectly mechanical computing devices that arrive at a determinate answer or ‘output’ to a
question, given certain data or ‘input’ (see Turing machines). According to the influential
‘Church-Turing thesis’ Turing machines can systematically compute anything that is intuitively
‘computable’ (see Church’s thesis). This idea is the inspiration for much of the modern computer
industry. CTM extends it to psychology: the suggestion is that all intelligent processes can be
systematically decomposed into algorithms consisting of steps that can be executed by primitive
processors of a machine.

2 Primitive processors

The specific architecture of a Turing machine involves a ‘tape’ consisting of an infinite number
of individual cells and a ‘scanner’, whose primitive processes consist in registering whether it is
scanning a ‘1’ or a ‘0’, and then moving left and right from cell to cell (see Turing machines).
This is only one among many possible computational architectures. What is essential to a
computer is merely that the primitive processes be realizable by some physical means or other.
To make computational theories of mind (CTM) remotely plausible as an account of the human
mind, we will think here in terms of the kinds of electrical devices that seem at least to be
available in the human nervous system (but are also exploited in commercial computers).

A good example of a primitive processor is a ‘gate’. An ‘and’-gate is a device that accepts two
inputs and emits a single output. If both inputs are ‘1’s (that is, sum to 2), the output is a ‘1’;
otherwise, the output is a ‘0’. An ‘exclusive-or’ (either but not both) gate is a ‘difference
detector’: it emits a ‘0’ if its inputs are the same and it emits a ‘1’ if its inputs are different (or
sum exactly to 1).

This talk of ‘1’ and ‘0’ is a way of thinking about the ‘bi-stable’ states of computer representers:
they are almost always in one or the other of two states; the in-between states are not exploited
computationally.

Using these gates, one could construct a binary ‘adder’ that operated according to the following
rules of binary addition:

The two digits to be added are connected both to an ‘and’-gate and to an ‘exclusive-or’-gate as
illustrated.

Consider figure 2a first. The digits to be added are ‘1’ and ‘0’, and they are placed in the input
register (the top pair of boxes). The ‘exclusive-or’-gate sees different things, and so outputs a ‘1’
to the right-most box of the answer register (the bottom pair of boxes). The ‘and’-gate outputs a
‘0’ except when it sees two ‘1’s, so it now outputs a ‘0’. In this way, the circuit computes ‘ ’. For

this problem, as for ‘ ’ and ‘ ’, the ‘exclusive-or’-gate does all the real work. The role of the
‘and’-gate in this circuit is ‘carrying’, which is illustrated in figure 2b. The digits to be added, ‘1’
and ‘1’, are again placed in the top register. Now, both inputs to the ‘and’-gate are ‘1’s, so the
‘and’-gate outputs a ‘1’ to the left-most box of the answer (bottom) register. The ‘exclusive-or’-
gate puts a ‘0’ in the right-most box, and so we have the correct answer, ‘10’.

3 Syntactic engines

The key idea behind the adder is that of a mirroring, or an isomorphism, between syntactic
relations among numerals and their semantics, namely the relations among the numbers the
numerals represent (see §1 above). This idea need not be confined to arithmetic. In their
development of modern ‘formal’ logic, Frege and Russell showed how deductive logic can be
formalized: that is to say, it can be characterized in terms of syntax, and this syntax can be
characterized in terms of the physical form of sentences that receive a systematic semantic
interpretation. In particular, it can be shown that a certain set of syntactically and formally
specifiable rules is adequate to capture a significant class of deductively valid arguments (see
Formal languages and systems).

Ordinarily, sentences in logic are manipulated by people consciously following explicit rules,
such as modus ponens, that are defined over their syntactic form, and it is often feared that CTM
is committed to ‘homunculi’ in the brain executing the rules. However, the rules could also be
obeyed by a Turing machine or, alternatively, a machine constructed along the lines of our simple
adder: for example, whenever the machine detected sentences of the form ‘P’ and ‘ ’ as input, it
could print ‘Q’ as output, thereby obeying modus ponens. In general, Turing showed that there
could be a sequence of physical processes that realized any finite piece of deductive reasoning
simply as a consequence of its physical organization. Consequently, one’s reasoning could be in
accordance with the rules of logic, not by virtue of someone representing and following them, but
as a result of the causal organization of the brain. This is what is meant by the expression a
‘syntactic engine driving a semantic one’ (see Fodor 1975, 1980; Newall 1980). As Dennett
(1975) put it, intelligent processes are broken down into separate processes so stupid that a mere
machine could execute them.

Note that, although the machine’s operations can be defined without mentioning the meaning of
symbols, this does not entail that the symbols are meaningless, any more than the fact that
bachelors are defined without reference to hair entails that bachelors are bald. Indeed,
computations are standardly defined over symbols that are presumed to have some meaning or
other (a point often missed by critics of CTM such as Searle (1984: 33); see Chinese room
argument).

How do symbols in computers acquire meaning? In the case of most artificial computers, their
semantics are pretty much whatever their designers say they are. However, this might not always
be so: philosophers have proposed a wide variety of conditions, involving both the internal states
of a system, and their (for example, causal and co-variant) relations to external phenomena, that
arguably would provide natural conditions for the states of a machine - or of an evolved animal
like ourselves - having specific meanings (see Semantics, informational; Semantics, teleological;
Semantics, conceptual role). These theories could provide semantic interpretations for the
syntactic states postulated by CTM.

4 Other forms of reason

Deductive arguments were the inspiration, and remain the clearest success, for CTM. Similar
hopes are entertained by many philosophers and cognitive scientists for a logic of induction,
abduction, practical reason and decision making (see Inductive inference; Inference to the best
explanation; Rationality, practical). The following affords an extremely simple example of what
they have in mind.

Imagine that a computer is provided with programs that perform operations on sentences in a
formal language like that of modern symbolic logic, and that it is supplied with certain
hypotheses, say, about circles and squares, to which it assigns certain initial probabilities. A
video camera presents it with some inputs that directly cause it to access those hypotheses,
deducing from each of them, one by one, the consequences regarding the character of the input
that would be expected if the hypothesis were true. These consequences are compared in each
case with the actual input that is received, and that hypothesis is ‘accepted’ which satisfies some
threshold value of a function of the initial probabilities and the highest degree of fit between its
consequences and that input.

Imagine also that the machine is capable of performing certain basic actions: for example,
whenever certain sentences (for example, ‘Move right!’) are in certain ‘command’ registers, then
its ‘arms’ (say) are caused to move in a corresponding way. And suppose that the sentences that
end up in these command addresses are the result of a program that spells out familiar decision-
theoretic reasoning (‘If more squares are wanted, and the probability of getting some by moving
right is greater than by moving left, then move right’) that are applied to an arbitrary set of basic
preferences that are wired into the machine (say, that it prefers to replicate squares and obliterate
circles).

If the machine now operated according to these programs, its actions would seem to be
explainable along familiar mentalistic lines. Although reasoning in most animals is massively
more complex than this, these programs would seem to capture what is essential to such
processes as perception, hypothesis testing, belief, desire and decision making. That, at any rate,
is the claim of CTM.

5 Gödel’s incompleteness theorem

It is often thought that Gödel’s famous ‘incompleteness’ theorem, which proved that no formal
system can prove all the truths of arithmetic (see Gödel’s theorems §§3-4), showed that the
human mind cannot be a computer, and that CTM must therefore be false (see Lucas 1961;
Penrose 1989). After all, Gödel appreciated the truth of the very sentences he is supposed to have
proved to be unprovable!

There are a great many problems in this reasoning (for a start, CTM is not committed to all
reasoning being deductive), but perhaps the most basic one arises from not appreciating the
essentially disjunctive character of Gödel’s theorem: what he proved was that either a formal
system of arithmetic was inconsistent or it was incomplete. If people managed to do something
that counted as proving the relevant undecidable sentence for their own system of arithmetic, they

would do this at the expense of no longer being consistent: a contradiction could now be derived
from their axioms. But this would not be a particularly remarkable fact: they would not explode
or die. They would simply be disposed to believe a contradiction (a disposition many of us
possess already). It is true that there are things no machine can do, namely, prove all the truths of
arithmetic without contradicting itself; but it has yet to be established that any human being can
do them either (see Putnam 1960; Lewis 1969, 1979).

6 Different modes of computation

There are many different ways in which computations can be carried out. Along lines closest to
the original computers described here, there are the ‘classical’, ‘symbolic’ approaches that
typically involve a ‘language of thought’ that is encoded and manipulated in the hardware of the
computer (see Fodor 1975; Newall 1980; Language of thought). But more recently there have
emerged ‘non-symbolic’, ‘connectionist’ approaches that eschew sentence-like structures, and
exploit networks of interconnected cells subject to varying degrees of excitation (see, for
example, Churchland and Sejnowski 1992; Connectionism). However, the two approaches need
not be exclusive: through ingenious encoding, connectionist programs can be (and standardly are)
run on computers constructed along classical lines, and vice versa. This is why one cannot tell
simply by looking at the physical architecture of the brain whether the mind ‘really’ has a
classical or connectionist ‘cognitive architecture’.

7 Different explanatory levels

This last point highlights an issue central to computational approaches to the mind: that there may
be many different explanatory levels for describing the brain (see Explanation). Note, for
example, that what is essential to the success of the computations of even our little adder (see
§§2-3 above) does not depend upon the gates being realized electronically. An indefinite variety
of devices (composed of pipes of water, or of mice in traps) could obey the same rules. Two
primitive processors (such as gates) count as computationally equivalent if they have the same
input-output function, that is, the same actual and potential behaviour, even if one works
hydraulically and the other electrically. So CTM describes the organization of the brain at a level
that abstracts from most of its biology.

This is not to say that the computer model is incompatible with a biological approach. Sometimes
important information about how a computer works could be gained by examining its circuits. As
Lycan (1981) emphasizes, there may well be indefinitely many different levels of description and
explanation of a system’s processes, within both CTM and biology itself.

CTM is thus a paradigm of a functionalist approach to the mind, whereby mental states are
individuated by their role in an organization (see Functionalism). Unlike dualism and
physicalistic reductionism, it is not committed to any particular claims about the substance out of
which minds might be composed. But, unlike behaviourism, CTM is not entirely indifferent to
what goes on inside the head.

In particular, although computational equivalence of primitive processors is defined in terms of
their input and output, the equivalence of non-primitive devices is not. Consider two multipliers
that work via different programs. Both accept inputs and emit outputs only in decimal notation.

One of them converts inputs to binary, does the computation in binary, and then converts back to
decimal. The other does the computation directly in decimal. These are not computationally
equivalent multipliers despite their identical input-output functions. Thus, not only might
creatures made of different stuff have the same mental lives, but behaviourally indistinguishable
creatures might have very different ones.

See also: Artificial intelligence; Chinese room argument; Cognitive architecture; Vision
NED BLOCK
GEORGES REY

 Routledge Encyclopedia of Philosophy, Version 1.0, London: Routledge

References and further reading

Bechtel, W. and Abrahamsen, A. (1991) Connectionism and the Mind, Oxford: Blackwell.(The
most comprehensive philosophical discussion of the connectionist approach to cognition.)

Block, N. (1990) ‘The Computer Model of the Mind’, in D. Osherson and E. Smith (eds) An
Invitation to Cognitive Science, vol. 3, Thinking, Cambridge, MA: MIT Press.(A fuller
exposition of CTM.)

Churchland, P.S. and Sejnowski, T.J. (1992) The Computational Brain, Cambridge, MA: MIT
Press/Bradford Books. (An excellent introduction to the study of neural computation using
artificial neural networks.)

Dennett, D. (1975) ‘Why the Law of Effect Will Not Go Away’, in Brainstorms, Cambridge,
MA: MIT Press. (Discussion of how computational processes do not presuppose intelligence to
execute them.)

Fodor, J. (1975) The Language of Thought, New York: Crowell.(Influential exposition and
defence by a philosopher of the hypothesis that thought consists in computations over
syntactically specified, semantically valuable representations encoded in the brain.)

Fodor, J. (1980) ‘Methodological Solipsism Considered as a Research Strategy in Cognitive
Psychology’, Behavioral and Brain Sciences 3: 417-24.(Argues that psychology need only
concern itself with internal computations over formally specified representations, independent of
their external interpretation.)

Lewis, D. (1969) ‘Lucas against Mechanism’, Philosophy 44: 231-3.(A reply to Lucas’ argument
against CTM.)

Lewis, D. (1979) ‘Lucas Against Mechanism II’, Canadian Journal of Philosophy 9 (3): 373-5.(A
further reply to Lucas.)

Lucas, J. (1961) ‘Minds, Machines and Gödel’, Philosophy 36: 112-27.(One of the original
efforts to argue against CTM on the basis of Gödel’s theorem.)

Lycan, W. (1981) ‘Form, Function and Feel’, Journal of Philosophy 78: 24-50.(Useful discussion
of how ‘multi-realizability’ recurs at innumerable levels of scientific explanation.)

Newall, A. (1980) ‘Physical Symbol Systems’, Cognitive Science 4 (2): 135-83.(Discussion by a
leading computer scientist of the hypothesis that thought consists of computations defined over
syntactic objects.)

Penrose, R. (1989) The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of
Physics, New York: Oxford University Press.(A recent attack on CTM, based in part on Gödel’s
theorem.)

Putnam, H. (1960) ‘Minds and Machines’, in Philosophical Papers, vol. 2, Mind, Language and
Reality, Cambridge: Cambridge University Press, 1975.(An early, influential statement of CTM.)

Rey, G. (1997) Contemporary Philosophy of Mind: A Contentiously Classical Approach, Oxford:
Blackwell.(An exposition and defence of CTM as an approach to philosophy of mind quite
generally.)

Searle, J. (1984) Minds, Brains and Science, Cambridge, MA: Harvard University press.
(Discussion of the ‘Chinese room’ objection to CTM.)

 Routledge Encyclopedia of Philosophy, Version 1.0, London: Routledge

Artificial intelligence

Artificial intelligence (AI) tries to make computer systems (of various kinds) do what minds can
do: interpreting a photograph as depicting a face; offering medical diagnoses; using and
translating language; learning to do better next time.

AI has two main aims. One is technological: to build useful tools, which can help humans in
activities of various kinds, or perform the activities for them. The other is psychological: to help
us understand human (and animal) minds, or even intelligence in general.

Computational psychology uses AI concepts and AI methods in formulating and testing its
theories. Mental structures and processes are described in computational terms. Usually, the
theories are clarified, and their predictions tested, by running them on a computer program.
Whether people perform the equivalent task in the same way is another question, which
psychological experiments may help to answer. AI has shown that the human mind is more
complex than psychologists had previously assumed, and that introspectively ‘simple’
achievements - many shared with animals – are even more difficult to mimic artificially than are
’higher’ functions such as logic and mathematics.

There are deep theoretical disputes within AI about how best to model intelligence. Classical
(symbolic) AI programs consist of formal rules for manipulating formal symbols; these are
carried out sequentially, one after the other. Connectionist systems, also called neural networks,
perform many simple processes in parallel (simultaneously); most work in a way described not
by lists of rules, but by differential equations. Hybrid systems combine aspects of classical and
connectionist AI. More recent approaches seek to construct adaptive autonomous agents, whose
behaviour is self-directed rather than imposed from outside and which adjust to environmental
conditions. Situated robotics builds robots that react directly to environmental cues, instead of
following complex internal plans as classical robots do. The programs, neural networks and
robots of evolutionary AI are produced not by detailed human design, but by automatic evolution
(variation and selection). Artificial life studies the emergence of order and adaptive behaviour in
general and is closely related to AI.

Philosophical problems central to AI include the following. Can classical or connectionist AI
explain conceptualization and thinking? Can meaning be explained by AI? What sorts of mental
representations are there (if any)? Can computers, or non-linguistic animals, have beliefs and
desires? Could AI explain consciousness? Might intelligence be better explained by less
intellectualistic approaches, based on the model of skills and know-how rather than explicit
representation?

1 Historical beginnings

Artificial intelligence (AI) researchers make two assumptions. The first is that intelligent
processes can be described by algorithms (sometimes called ‘effective procedures’), which are
rules where each step is so clear and simple that it can be done automatically, without
intelligence. This is an empirical hypothesis, which some critics of AI accept (Searle, in Boden
1990: ch. 3) and others reject (Penrose 1989). The second is that all algorithms can be
implemented on some general-purpose computer. This assumption is generally accepted. It is
based on the Church-Turing thesis, which states that a universal Turing machine, to which
general-purpose computers are approximations, can compute any algorithmically computable
function (see Church’s thesis; Turing machines).

The best-known types of AI - classical AI and connectionism - share these two assumptions. But
they differ in other ways (see §§2-4). Classical AI involves serial, or one-by-one, processing of
(sometimes complex) formal instructions, whereas connectionism involves parallel, or
simultaneous, processing among many simple units. Classical computation uses programs made
up of formal rules to generate, compare and alter explicit symbol structures (see Mind,
computational theories of; Language of Thought). Connectionist computation typically uses
numerical (statistical) rules to determine the activation within networks of locally interacting
units and, in systems that can learn, to alter the firing thresholds of individual units and the
(excitatory or inhibitory) ‘weights’ on their interconnections. The system’s ‘knowledge’ is
contained implicitly in the constellation of connection weights (see Connectionism). Some
philosophers uuse ‘computation’ to apply only to the classical type, first defined by Turing in
1936. AI researchers themselves normally use the term to cover both kinds of information
processing.

Despite their differences, both these types of AI started from the same source: a seminal article
written in 1943 by McCulloch and Pitts (Boden 1990: ch. 1). This discussion of ‘A Logical
Calculus of the Ideas Immanent in Nervous Activity’ integrated three powerful ideas of the early
twentieth century: propositional logic, the neuron theory of Charles Sherrington, and Turing
computability.

The authors showed that simple combinations of (highly idealized) neurons could act as ‘logic
gates’. For instance, a McCulloch-Pitts neuron with two inputs could fire if and only if both
inputs were firing (an ‘and’-gate), or if only one input were firing (an ‘or’-gate), or if some
specific input were not firing (a ‘not’-gate). Since every truth-function can be expressed with
‘not’ and ‘or’ alone, McCulloch and Pitts were able to show that every function of the
prepositional calculus is realizable by some neural net; that every net computes a function that is
computable by a Turing machine; and that every computable function can be computed by some
net. Their work inspired early efforts in both classical and connectionist AI because they
appealed to logic and Turing computability, but described the implementation of these notions as
a network of abstractly defined ‘neurons’ passing messages to their neighbours.

The neural networks discussed in this entry were extremely simple. For example, any link always
had the same amount of influence, whereas most modern connectionist systems allow for
continuous changes in the weight of each connection. But the authors’ theoretical ambitions were
vast. Perception, reasoning, learning, introspection, motivation, psychopathology and value
judgments: all, said McCulloch and Pitts, could in principle be understood in their terms. The
whole of psychology would in future consist of the definition of various kinds of nets capable of
doing the things minds do - that is, capable of computing the sorts of things which minds
compute. Neurophysiology and neuroanatomy would show how networks are implemented in the
brain, but psychology would define their logical-computational properties. Their views on the
relation between psychology and physiology (or mind and body) anticipated later developments
in the philosophy of mind (see Functionalism).

McCulloch and Pitts’ 1943 paper made AI possible in three ways. It influenced von Neumann, in
designing the digital computer, to use binary arithmetic and binary logic (see Neumann, J. von).
It gave both psychologists and technologists the confidence to model propositional (symbolic)
reasoning, as opposed to only arithmetical calculation, on logic-based computers. And it inspired
people to start studying the computational properties of various types of neural network.
Although classical and connectionist AI are often described as utterly distinct paradigms,
research in both these approaches commenced because of this paper.

Early connectionist work was further encouraged by McCulloch and Pitts in a paper of 1947.
They pointed out that the brain is a parallel-processing device, not a sequential one. Moreover, it
can function acceptably even when some cells misfire or die, or when the input signal is ‘noisy’.
The perfect input data assumed within their first paper are, in real life, neither necessary nor often
available. The question arises, then, how we (and animals) manage without them. McCulloch and
Pitts described a statistical technique, based on differential equations like those of
thermodynamics, whereby a parallel-processing system could compute (learn to distinguish)
various patterns despite slight variations in the input. These (statistical) ideas were less
biologically unrealistic than their earlier (logic-based) discussion. Nevertheless, the 1947 paper

was less influential over the next three decades than their earlier work. Only in the 1980s did
statistical, parallel-processing models achieve prominence (see §3 below).

2 Classical AI

Classical AI is the best-known type of AI, and is sometimes called traditional AI. It uses
sequential programming (do this, then do that), and employs internal representations of lists,
semantic networks, arrays and other information-processing structures. These representational
structures and their components are interpreted as symbolic representations of propositions and
concepts (or beliefs and ideas). Accordingly, this approach is also called symbolic AI.

Most internal representations in classical AI are language-like, being constructed from
components each of which has some distinct causal-semantic role (though just which role may
vary according to context). Some philosophers, such as Jerry Fodor, explain human mental states,
or propositional attitudes, in terms of a hypothetical ‘language of thought’ having logical
properties (compositionality, productivity, systematicity) like those exploited in classical AI (see
Fodor, J.A.; Language of thought). A ‘toy’ example of one simple type of classical AI program (a
production system) might look something like this:

If thirsty then set goal to drink.
If current goal is drink and weather is cool then set goal to seek kettle.
If current goal is seek kettle and not in kitchen then go to kitchen and locate kettle.
If kettle is empty then fill kettle with water.
If kettle is full then put kettle on hob and heat hob and locate teapot.
(and so on)

As this toy example suggests, every action, and every condition for action, has to be explicitly
specified. Actions that undo previous actions (such as emptying the kettle you just filled) must be
avoided. Some unintended consequences of actions have to be anticipated and tidied up (turn off
the hob). Default steps must be specified in case any precondition is not satisfied (hot weather,
not thirsty). Goal-subgoal structure must be recognized, and the program must be able to ‘pop up’
to the top goal-level when the lowest sub-goals have been achieved or abandoned. Moreover
(what the toy program does not show), procedures must be provided for carrying out the tests (is
it cool, and is the kettle full?) and for executing the lowest-level actions (going to the kitchen,
locating and filling the kettle) (see Rationality, practical).

Classical AI modelling is widespread in computational research. It is used to study, for example,
problem solving, planning, vision, robotics, learning, natural-language understanding, analogy
and the perception and performance of music (Boden 1987, 1988, 1990; Rich and Knight 1991).
It is applied also to phenomena often assumed to be intractable for a computational (or even
scientific) explanation, such as motivation, emotion and creativity.

Among the advantages of classical AI are its ability to represent hierarchical structure and to
provide relatively transparent models (whose workings can be well understood by inspecting the
program). A further advantage is that it can define ‘strong’ (exceptionless) problem constraints. It
is sometimes forgotten, especially by proponents of connectionism, that strong problem
constraints are often needed. For instance, every sentence must have a noun phrase and a verb

phrase; and waltz time in music demands that each bar have exactly three beats. Admittedly, a
composer may produce some anomalous bars (for example, having only two beats in the upper
voice along with three in the lower); but one cannot keep doing this, or break out into march
time, without abandoning the goal of composing a waltz. Nor can one communicate intelligibly if
one omits most noun phrases. Given that certain rules are mandatory, an AI system should
respect them, not approximate them by blurring them with others.

Although it began no earlier than connectionism, classical AI achieved visible success before
parallel-processing models did. The first major successes occurred in the 1950s. The logic
theorist and general problem-solver of Newell and Simon introduced ‘means-end analysis’,
wherein a program analyses the problem as a hierarchy of goals and sub-goals (on indefinitely
many levels) and chooses the action most likely to reduce the difference between the current state
and the desired state (the goal). This method was widely adopted in theorem proving, problem
solving and planning. Another early landmark was Samuels’ draughts (checkers) player, which
played well and even learned to adapt to its opponent’s individual style. And early language-
using programs used stored English word strings and simple linguistic schemata to conduct
‘conversations’ in which the human interlocutors were occasionally (if briefly) persuaded that
they were interacting with another person. (See Feigenbaum and Feldman 1963.)

By the early 1970s there had been considerable advance. For instance, natural-language
processing could now be sensitive to highly complex syntactic structure or to the unspoken
assumptions hidden in the semantics underlying the actual words - so that programs could
‘answer’ questions about things not explicitly mentioned. Machine learning was sometimes
achieved through the program’s having a model not only of the task domain but also of its own
action strategies - which, with experience, it modified. Other advances followed. Various high-
level AI programming languages were developed, such as LISP (‘list-processing language’) and
PROLOG (‘programming in logic’). And Newell and Simon developed ‘production systems’, a
programming method based on if-then (condition-action) rules: if the condition is satisfied, then
the action is taken. The condition may be a complex conjunction or disjunction, including
(sometimes) a statement of the system’s current goal; similarly, the action may be complex
and/or internal (see the toy AI program above). These developments affected both technological
and psychological AI. Production systems, for instance, are the core of most ’expert systems’, but
were originally proposed as a model of human thinking. (An expert system is an AI program
consisting of a set of ‘If… then’ rules, which can be used to aid human beings in solving
specialist problems such as locating oil, planning a travel itinerary or diagnosing a disease.)

3 Classical AI and human thinking

Traditional AI began with the assumption that symbolic logic is a normative model for both
human and automated reasoning (see Common-sense reasoning, theories of). This assumption sits
well with some forms of reasoning, such as theorem-proving (although even there, human beings
sometimes employ non-logical methods, such as imagery and analogy). But most human
reasoning is approximate and qualitative. We can understand speech even when it is
ungrammatical, heavily accented and partly obscured by noise; and we can recognize imperfect
handwriting, shadowy scenes, and perceptual or linguistic analogies of many kinds. Also, we can
use world knowledge in solving logical problems and in deciding whether strictly logical
reasoning, as opposed to fallible heuristics based on experience, is appropriate in a given case.

For example, even teachers of logic can solve a problem concerning rules of postage (reversing a
minimum number of envelopes to inspect the postage stamps) more easily than a problem of
identical logical form posed in abstract terms. In short, we have common sense (see Rationality
of belief; Common-sense reasoning, theories of).

Work in AI has increasingly focused on common-sense reasoning, not least because classical AI
systems tend to be ‘brittle’. If data are missing or corrupted, a classical AI program may give an
absurd answer, or none at all. For example, a story-writing program may allow a character to
drown a few feet away from a potential rescuer on the river bank, because the programmer did
not explicitly include the information that one is normally able to see whatever is going on in
front of one’s eyes. Similarly, an expert system might ask whether a particular three-year-old girl
has any children, not knowing that pre-pubertal girls cannot conceive. People know many such
facts about the world and often give something near the right answer (a good guess) even when
they lack some relevant information. So AI research has studied probabilistic reasoning, non-
monotonic logic (where not-p may turn out to be true even though p had been proved earlier),
case-based or analogical explanation, deep (causal) reasoning, and common-sense semantic
networks and belief systems (see Non-monotonic logic). As these new methods are incorporated
into classical AI programs, the brittleness typical of first-generation AI models (for example, the
rule-based ‘expert systems’ used by many commercial and public institutions) should be reduced.

To reduce brittleness, however, is not to avoid it entirely. Some critics believe that classical AI
methods will never model everyday human thinking. A leading AI logicist has recently recanted
(McDermott, in Boden 1990: ch. 9). Classical AI has been criticized also by philosophers who
reject the Platonist assumption that all truths are analysable in terms of formalizable elements
(Dreyfus 1979). Some philosophers see connectionism as immune to philosophical critiques of
classical AI (see §3 below), while others regard it as acceptable only up to a point (Dreyfus and
Dreyfus, in Boden 1990: ch. 13).

For AI to be deeply relevant to theoretical psychology and the philosophy of mind, it need not
promise actual replication of all human behaviour. So someone (such as Fodor) who propounds a
computational philosophy of mind may, without contradiction, doubt whether AI systems could
ever in practice achieve more than a tiny fraction of human behaviour. Nor need AI researchers
themselves believe in this possibility. They may allow that certain behaviour cannot, in principle
or in practice, be replicated by AI (of any type). Moods, for instance, may be unreplicable in
principle, and superb novel-writing may be unachievable in practice.

Even AI workers who do believe that full replication is possible need not accept the Turing test
(see Turing, A.M. §3) as their criterion of intelligence. They all allow that a non-mental thing
could sometimes fool us into thinking it intelligent; indeed, this happened so often with ELIZA,
an early language-using program, that this user illusion is called the ‘ELIZA effect’. And some,
for example, argue that mere replication of behaviour, without evolutionary descent of the
underlying causal mechanisms, would not suffice for true understanding.

One well-known philosophical critic of AI, especially (though not exclusively) in its classical
form, is John Searle (see Boden 1990: ch. 3; Chinese room argument). Searle argues that even if
an AI model passed the Turing test (which he thinks is in principle possible), it would not really

be thinking, or understanding, anything. Correlatively, a computational psychology could not
explain how we can understand: at best, it could explain what we do with meanings once we have
them. He argues that programs are defined purely syntactically (by formal rules defined over
formal constituents), whereas intentionality - or meaning - involves more than mere syntax.
Searle’s argument has been challenged in many ways by philosophers and AI scientists, and
remains controversial. Most opponents accept his assumption that computation is purely
syntactic, disagreeing with him on other grounds. However, this assumption is also controversial
(see Boden 1990: ch. 4). The nature of computation - and its connection with meaning - is less
clear, and less universally agreed, than Searle supposes (see Language of thought).

More generally, many philosophical critiques - and defences - of AI turn on issues of semantics
(not behavioural replication). But philosophical semantics is itself disputed. To speak of
‘information processing’ is problematic, because the nature of information is controversial (see
Semantics, informational). Similar remarks apply to symbol manipulation. Other connected
issues include whether meanings are ‘in the head’ (semantic internalism) or partly constituted by
the things to which they refer (externalism) (see Content: wide and narrow), and the relevance (if
any) of evolution in establishing meaning (see Semantics, teleological). Even within AI,
researchers give differing accounts of semantics (and not all AI workers subscribe to ‘strong AI’
as Searle defines it). Some, for example, accept a procedural semantics wherein the execution of
particular computations, or mini-programs, suffices for particular meanings (see Semantics,
conceptual role). Others see causal interaction with the external world (and even evolutionary
history) as necessary for meaning. In short, the semantics of AI are controversial both within and
outside the field.

4 Connectionism and hybrid systems

Connectionist models are parallel-processing systems, involving mutually interactive
computations grounded in local interactions between connected units (see Connectionism). Each
individual computation is much simpler than a typical instruction in a classical AI program. Even
so, connectionist units and computations (and learning rules, if any) vary significantly.

For instance, the semantic interpretation given to connectionist units by AI researchers differs.
(This is true irrespective of philosophers’ theories about semantics, and the relation of AI and
meaning.) Some connectionist units are described as computing the truth-values of entire
propositions; others are intended to code familiar concepts. The representational role of these
units is thus comparable to the rules and rule components in the toy AI program in §2 (however,
connectionist systems cannot specify action hierarchies, like that outlined above for quenching
thirst). Yet other connectionist units stand for detailed subsymbolic micro-features, which are not
always expressible in terms of everyday concepts or symbols. Thus an input unit might code for a
tiny patch of a highly specific (unnamed) shade of purple.

The symbolic/subsymbolic distinction, so defined, is sometimes thought to distinguish (all)
connectionist from (all) classical AI. This is a mistake. The distinction is vague: just which
concepts count as everyday concepts? Moreover, not all connectionist systems employ
subsymbolic processing, and many classical AI programs, especially in vision and natural-
language processing, code for subsymbolic microfeatures. The distinction is better defined in
terms of the presence

or absence of causally efficacious and semantically evaluable logical constituents. Such
(symbolic) constituents typify classical AI. Subsymbolic units (in this sense) have no fixed,
context-free interpretation, since their effect on processing varies according to the simultaneous
activation of the other units.

In the late 1950s and the 1960s, classical AI progressed faster than connectionism. None the less,
some researchers persevered with early forms of connectionist modelling. But in 1969 Minsky -
widely acknowledged as a father of classical AI, but also the first person to build a connectionist
learning machine - proved surprising limitations on what very simple networks (‘perceptrons’)
could compute (see Minsky and Papert 1969). Although he stated that more complex networks
might be more powerful, there was a marked drop in interest in connectionist research.

A few individuals within AI, and some in psychology and physics, worked on connectionist
systems during the 1970s and early 1980s. But not until 1986 did connectionism attract
substantial attention. In the late 1980s it hit the headlines and attracted attention from
philosophers, being widely hailed as a new, all-powerful computing methodology. More
accurately, one specific type of connectionism attracted attention (others being largely ignored):
‘parallel distributed processing’ (PDP). In a distributed connectionist system, a concept is not
stored by a single unit (as in localist connectionism). Rather, it is represented by a global pattern
of activation spread across the entire network, many different units making some contribution. It
may be impossible to assign a specific, context-free interpretation to a given unit. Moreover, no
individual unit is either necessary or sufficient for the whole network to represent some particular
concept (recognize some particular pattern).

PDP models themselves vary in important ways. Not all employ subsymbolic processing, though
most do. Some allow only for on-off variation in the activity of each unit, while others allow for
continuous weights defining the unit’s influence. Not all PDP models can learn, though most can.
Those which can learn employ various learning rules. The number of units can vary, with
significant implications for the type of learning achievable. And although most PDP systems
have only ‘feed-forward’ connections, passing from units nearer the input to units nearer the
output, some have backward links also (called ‘back-propagation’). In general, PDP systems
work by adjusting the simultaneous activity of the constituent units until some global equilibrium
is reached (different concepts are represented by different equilibria within the same PDP
system). This is achieved not by a sequence of symbolic rules, but by numerically described
statistical processes like those of thermodynamics. The changing states of the system are
described not as symbol structures (such as lists), but as numerical vectors.

Because of their statistical design, PDP systems are better able than classical models to perform
well despite noisy input, and to retrieve an entire memory given only a fragment. Some classical
AI programs can do this too, up to a point, if specifically pre-programmed to do so. PDP models,
by contrast, ‘naturally’ achieve a plausible end-state given partially conflicting evidence,
weighing both strong and weak constraints (and the extent of their mutual coherence). That is,
they perform multiple constraint satisfaction, where the information may be partially conflicting
and/or missing. And PDP systems with learning rules (which change the activation weights on
the connections with experience) can learn –as people can - from being shown a range of
examples.

PDP models are unlike real brains in many ways. For instance, the widely used back-propagation
algorithm learns in a very un-biological fashion. Less neurophysiologically unrealistic forms of
connectionism have been developed, but even these fall far short of neural networks in the brain.

Another drawback of first-generation PDP systems is that, unlike classical AI programs, they
cannot model hierarchical structure or sequential processing. Some types of human thinking -
many aspects of language and problem-solving, for example - require both these features. Most
AI researchers use only classical, or only connectionist, models. This sociological fact has
encouraged some philosophers to exaggerate the differences, and the supposed superiority of one
approach over the other. However, these AI methods have complementary strengths and
weaknesses. Accordingly, there is growing interest in hybrid models, which try to get the best of
both worlds.

Various philosophers use connectionist ideas in addressing important philosophical problems.
These include symbol grounding, the problem of how words and concepts acquire meaning
(Cussins, in Boden 1990: ch. 15); the role of folk psychology in cognitive science (Clark 1989);
family likenesses, paradigm cases, and prototypes of concepts (Clark 1993); eliminative
materialism (Churchland, in Boden 1990: ch. 14); and scientific explanation (Churchland 1990).
Many philosophers see affinities between connectionism and Wittgensteinian views of language,
because connectionist representations are not cut and dried like those used in classical AI but
allow for borderline cases and for varying degrees of similarity.

5 Situated robotics and anti-representationalism

Classical and connectionist AI share a commitment to internal representation as integral to
intelligence. Both these approaches (and most cognitive scientists) posit identifiable data
structures ‘in the head’ that are distinguishable from the system’s processing (which is done ‘on’
or ‘with’ them), and that stand for things in the world. This commitment has been
(controversially) abandoned by AI work in situated robotics (Boden 1996; Maes 1991). Situated
robotics is sometimes termed ‘nouvelle AI’ (in contrast to traditional AI), or ‘behaviour-based
AI’ (in contrast to AI based on abstract task decomposition). It claims to be more biologically
realistic than classical AI. It emphasizes ‘autonomous’ systems specifically adapted to their
environment, not general-purpose computers controllable by many different programs. And it
builds whole (sensory-motor) systems, rather than decomposing intelligence into distinct tasks
(vision, planning, motor action) which then have to be integrated to provide a functioning robot.

Situated robotics avoids using internal representations of the external (objective) world, although
some systems use temporary representations of their own (subjective) place in or actions on their
immediate environment. And it uses a bottom-up approach to generate complex behaviour.
Because the environment is assumed to be noisy, dynamic and inconvenient, the detailed world-
modelling and top-down planning typical of classical AI are rejected. No complex program is
involved to decide on, monitor and control the creature’s activities. Instead, the control of
behaviour flows from the nature of the system itself, in the sense that the system is engineered
(not programmed) to respond to environmental triggers in certain ways. By these means,
researchers in situated robotics seek to avoid the notorious ‘frame problem’ (Boden 1990: chaps
7-9). This problem bedevils AI work on robot planning, language understanding and common-
sense reasoning. It concerns foresight of the many intended and unintended consequences of

action. For instance, if a box is moved across the floor then all its contents move also, whereas
the chairs (and table and curtains) do not. A formal representation of action must explicitly allow
for all the intended effects, or some may not happen. And the action’s many unintended effects
will be wholly irrelevant only if the agent is very lucky, or very thorough in explicitly
anticipating potentially relevant outcomes.

Classical robots rely on planning, done within an internal world model. To avoid the frame
problem, they must explicitly anticipate a host of intended consequences and unintended side-
effects. Although this exhaustive listing of consequences is feasible in artificially impoverished
environments, it is impractical in the real world (the thirst-quenching program in §2 would often
lead to disappointment, because of unexpected facts about the house concerned). Moreover,
because the real world cannot be relied on to remain unchanged, detailed anticipatory plans may
fail on execution. Instead of manipulating complex internal representations of the world, situated
robots deal directly with it. Situated roboticists eschew the abstract functional task-decomposition
employed by classical AI. Instead, they analyse intelligence in terms of ‘behaviours’. Their
robots engage in simple, hardwired behaviour triggered by specific, ecologically relevant,
environmental cues.

The anti-representationalist stance of nouvelle AI is controversial. Some situated robots use
temporary representations that are not objective but ‘deictic’ (subject-centred), being closely
bound to the robot’s behaviour in this place on this occasion (see Content, indexical). Admittedly,
some situated robots – including .

 Routledge Encyclopedia of Philosophy, Version 1.0, London: Routledge

References and further reading

Boden, M.A. (1987) Artificial Intelligence and Natural Man, London: MIT Press, 2nd edn,
expanded.(A non-technical introduction to AI, including its philosophical, psychological and
social implications; extensive bibliography.)

Boden, M.A. (1988) Computer Models of Mind: Computational Approaches in Theoretical
Psychology, Cambridge: Cambridge University Press.(A textbook on computational psychology;
extensive bibliography.)

Boden, M.A. (ed.) (1990) The Philosophy of Artificial Intelligence, Oxford: Oxford University
Press.(Papers on the main philosophical-methodological disputes within AI, with a bibliography.)

Boden, M.A. (ed.) (1996) The Philosophy of Artificial Life, Oxford: Oxford University
Press.(Papers on the philosophy of artificial life, with a bibliography.)

Churchland, P.M. (1990) A Neurocomputational Perspective: The Nature of Mind and the
Structure of Science, Cambridge, MA: MIT Press.(A defence of Churchland’s approach to
connectionism, with applications to various philosophical problems including the philosophy of
science.)

Clark, A.J. (1989) Microcognition: Philosophy, Cognitive Science, and Parallel Distributed
Processing, Cambridge, MA: MIT Press.(An accessible introduction to connectionism with a
discussion of its relation to classical AI and of the role of folk psychology in cognitive science.)

Clark, A.J. (1993) Associative Engines: Connectionism, Concepts, and Representational Change,
Cambridge, MA: MIT Press.(A more advanced discussion of connectionism and its application to
various problems in philosophy and psychology; many references.)

Cliff, D., Harvey, I. and Husbands, P. (1993) ‘Explorations in Evolutionary Robotics’, Adaptive
Behavior 2: 73-110.(A survey of work in evolutionary robotics discussed in §5 above.)

Dreyfus, H.L. (1979) What Computers Can’t Do: The Limits of Artificial Intelligence, New
York: Harper & Row, 2nd edn.(A philosophical critique of the foundations of classical AI, in
relation to Platonic, Cartesian and Continental philosophy.)

Feigenbaum, E.A. and Feldman, J. (eds) (1963) Computers and Thought, New York: McGraw-
Hill.(A collection of classic papers in AI, with an extensive bibliography.)

Gelder, T. van (1995) ‘What is Cognition, if not Computation?’, Journal of Philosophy 91.(A
defence of dynamical systems, as opposed to computation, as the basis of mental processing.)

Holland, J.H., Holyoak, K.J., Nisbet, R.E. and Thagard, P.R. (1986) Induction: Processes of
Inference, Learning, and Discovery, Cambridge, MA: MIT Press.(Describes how genetic
algorithms work, and how they have been applied to various problems, including some of
philosophical interest. Fairly difficult.)

Maes, P. (ed.) (1991) Designing Autonomous Agents, Cambridge, MA: MIT Press.(A collection
of articles on situated robotics, with many references.)

Minsky, M.L. and Papert, S. (1969) Perceptrons: An Introduction to Computational Geometry,
Cambridge, MA: MIT Press.(Limitations on what very simple networks (‘perceptrons’) can
compute.)

Penrose, R. (1989) The Emperor’s New Mind, Oxford: Oxford University Press.(An attack on the
notion that all human thought can be described by algorithms.)

Port, R. and Gelder, T. van (eds) (1995) Mind as Motion: Dynamics, Behavior and Cognition,
Cambridge, MA: MIT Press.(A collection of papers illustrating the dynamic-systems approach in
cognitive science, and its critique of representation.)

Rich, E. and Knight, K. (1991) Artificial Intelligence, New York: McGraw-Hill, 2nd edn.(A
comprehensive textbook of AI, including detailed descriptions of various AI methods; good
bibliography.)

Todd, S. and Latham, W. (1992) Evolutionary Art and Computers, London: Academic Press.(A
detailed description of the use of genetic algorithms by a professional artist to produce ‘families’
of three-dimensional computer sculptures.)

Varela, F.J., Thompson, E. and Rosch, E. (1991) The Embodied Mind: Cognitive Science and
Human Experience, Cambridge, MA: MIT Press.(A defence of ’embodiment’ and
embeddedness’ in anti-Cartesian cognitive science.)

 Routledge Encyclopedia of Philosophy, Version 1.0, London: Routledge

Cognitive architecture

Cognitive architecture involves the properties of mental structures and mental mechanisms that
do not vary when people have different goals, beliefs, precepts or other cognitive states. A
serious computational theory of mind (CTM) requires that the architecture be constrained
independently of such states. One consequence of taking the distinction between architecture and
representation-governed process seriously is that it provides a reply to those who are sceptical
about the role of rules in cognition, on the grounds that following rules leads to an infinite
regress: in CTM, rules are executed by the causal structure of the architecture, and hence do not
require further rules for following rules.

The notion of cognitive architecture in the context of the computational theory of mind (CTM)
comes directly from the notion of computer architecture, which refers to the relatively fixed set of
computational resources available to a programmer in designing a program for a given computer
system. Among other properties, this includes the type of memory that the computer has, the way
it encodes information (the system of symbolic codes or language it uses), the basic operations
that are available, and the constraints on the application of these operations (as in serial v. parallel
sequencing). The architecture is a functional characterization of the computer system on which
the program runs (see Mind, computational theories of).

It is important to bear in mind that computer architecture reflects the physical properties or
‘hardware’ only indirectly, since the architecture visible to the programmer might itself be
simulated in software or firmware. For this reason it is sometimes referred to as the ‘functional
architecture’ or even as the ‘architecture of the virtual machine’. Someone writing a program in,
say, LISP or C, has available the resources (operations, datastructures and programming
constraints) of those languages and is not concerned with their physical instantiations: LISP or C
in that caseis the architecture of the relevant virtual machine.

In theories of cognition, the notion of architecture is particularly important because it represents
the dividing line between cognitive and non-cognitive aspects of a model. In CTM, mental
processes are modelled as computer programs, but the process of executing these programs itself
lies outside the domain of CTM. What makes the computer model run, or generate token
instances of behaviour, is the causal structure of the underlying computational mechanism, the
computational architecture.

The architecture of computational models was often taken for granted in modelling cognitive
processes. In the 1950s, information-processing models were typically expressed in terms of
whatever architecture was available or seemed intuitively reasonable - usually a so-called ‘von
Neumann’ architecture which uses a serial fetch-execute computational regime and location-
addressable register memory. But in more recent years, under the influence of Simon and
Newell’s literal interpretation of programs-as-theories (see Simon and Newell 1964; developed
more fully in Newell 1990), it became clear that the assumptions one made about the underlying
architecture strongly influenced which programs it could implement (not which functions it could
compute, since with suitable external memory it could compute any computable function) and
hence constituted a strong claim about the nature of mind.

Mapping out the cognitive architecture in detail is important if the CTM is to provide a literal
scientific hypothesis about the causes of cognitive behaviour. Programs can only be individuated
relative to an architecture. According to the way in which computer scientists and cognitive
scientists individuate programs, two different architectures cannot execute the same program,
although the universality of such machines guarantees that (subject to memory requirements)
they can compute the same function. The kind of ‘strong equivalence’ of computational models
with mental processes that many cognitive scientists demand is not achieved just by providing a
detailed characterization of the process in the form of a program. Because the form of such a
program depends on the architecture on which it runs, the theory must specify an independently
motivated architecture, including a specification of the representational system it uses. In such a
fully articulated model the individual operations - as well as the symbolic expressions they
operate over - the sequencing discipline that is imposed on the program execution, the memory
constraints that it must adhere to, and so on, all constitute empirical claims. Only when one has
independently specified both the architecture and the representations can one’s computational
model lay claims to being ‘strongly equivalent’ to the cognitive process being modelled (see
Pylyshyn 1984).

In recent years there has been a great deal of debate about which class of architecture is the right
one for modeling cognition. In particular there have been proposals that the class of
computational architectures that operate over syntactic strings, as in the Turing machine or in
proof theory, are inappropriate for modelling psychological processes (see Turing machines;
Proof theory). Instead, some people have proposed so-called ‘connectionist’ or ‘neural net’
architectures, consisting of a network of simple threshold elements that compute certain functions
(the precise class being unknown) by passing activation among the elements over weighted links
(see Connectionism). Such networks, it is claimed, compute without reading or writing symbolic
expressions. The debate raises the philosophic issue of whether mind can or should be modelled
as a syntactic engine, computing in a ‘language of thought’, as is generally assumed in the CTM
(see Fodor and Pylyshin 1988; Language of thought).

Distinguishing architecture and representations (including representations of processes in terms
of programs which run on that architecture) is important to the philosopher for a number of
reasons (see Pylyshyn 1996). For one, it represents an attempt to understand the nature of the
relatively fixed mental structures that instantiate psychological processes: the basic cognitive
capacities of the mind within which representation-governed processes are instantiated. Some of
these structures are likely to be universal and perhaps even innate (we put aside for now the issue

of how architecture changes, except to note that it does not change in response to new knowledge
- by definition it is not ‘cognitively penetrable’).

Recognizing the role of architecture also helps to resolve a problem about rule following raised
by Wittgenstein (1953): how is a system to know how to follow a rule? If by using another rule,
this invites an infinite regress (see Wittgenstein, L. §10). In CTM the regress does not arise
because the architecture executes the rules and it does not do this by using rule-following rules,
but, instead, by virtue of its causal structure. In a computer we do not have to have algorithms for
executing algorithms; instead the physical instantiation of the algorithm in the machine, together
with the structure of the machine, simply causes the behaviour to unfold. The relevant abstract
description of these causal-structural properties constitutes a description of the architecture of the
system.

See also: Computability theory; Language of thought; Modularity of mind
ZENON W. PYLYSHYN

 Routledge Encyclopedia of Philosophy, Version 1.0, London: Routledge

