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How are our brains functionally organized to achieve adaptive behavior in a changing world?
This article presents one alternative to the computer metaphor suggesting that brains are
organized into independent modules. Evidence is reviewed that brains are organized into parallel
processing streams with complementary properties. Hierarchical interactions within each stream
and parallel interactions between streams create coherent behavioral representations that
overcome the complementary deficiencies of each stream and support unitary conscious
experiences. This perspective suggests how brain design reflects the organization of the physical
world with which brains interact. Examples from perception, learning, cognition, and action are
described, and theoretical concepts and mechanisms by which complementarity is accomplished
are presented.

In one simple view, our brains are proposed to possess independent modules, as in a digital
computer, and we see by processing perceptual qualities such as form, color, and motion using
these independent modules. The brain’s organization into processing streams1 supports the idea
that brain processing is specialized, but it does not, in itself, imply that these streams contain
independent modules. Independent modules should be able to fully compute their particular
processes on their own. Much perceptual data argue against the existence of independent modules,
however, because strong interactions are known to occur between perceptual qualities2-6. For
example, changes in perceived form or color can cause changes in perceived motion, and
conversely; and changes in perceived brightness can cause changes in perceived depth, and
conversely. How and why do these qualities interact? An answer to this question is needed to
determine the functional and computational units that govern behavior as we know it.

The present article reviews evidence that the brain’s processing streams compute
complementary properties. Each stream’s properties are related to those of a complementary stream
much as a lock fits its key, or two pieces of a puzzle fit together. It is also suggested how the
mechanisms that enable each stream to compute one set of properties prevent it from computing a
complementary set of properties. As a result, each of these streams exhibits complementary
strengths and weaknesses. How, then, do these complementary properties get synthesized into a
consistent behavioral experience? It is proposed that interactions between these processing streams
overcome their complementary deficiencies and generate behavioral properties that realize the unity
of conscious experiences. In this sense, pairs of complementary streams are the functional units
because only through their interactions can key behavioral properties be competently computed. As
illustrated below, these interactions may be used to explain many of the ways in which perceptual
qualities are known to influence each other. Thus, although analogies like a key fitting its lock, or
puzzle pieces fitting together, are suggestive, they do not fully capture the dynamism of what
complementarity means in the brain. I will suggest below that the concept of pairs of
complementary processes brings new precision to the popular idea that both functional
specialization and functional integration occur in the brain. Table 1 summaries some pairs of
complementary processes that will be described herein.

Why does the brain often need several processing stages to form each processing stream?
Accumulating evidence suggests that these stages realize a process of hierarchical resolution of
uncertainty. ‘Uncertainty’ here means that computing one set of properties at a given stage can
suppress information about a different set of properties at that stage. As I will illustrate below, these
uncertainties are proposed to be overcome by using more than one processing stage to form a
stream. Overcoming informational uncertainty utilizes both hierarchical interactions within the
stream and the parallel interactions between streams that overcome their complementary
deficiencies. The computational unit is thus not a single processing stage; it is, rather, proposed to
be an ensemble of processing stages that interact within and between complementary processing
streams.

According to this view, the organization of the brain obeys principles of uncertainty and
complementarity, as does the physical world with which brains interact, and of which they form a
part. This article suggests that these principles reflect each brain’s role as a self-organizing
measuring device in the world, and of the world. Appropriate principles of uncertainty and
complementarity may better explain the brain’s functional organization than the simpler view of



3/15/00

3

computationally independent modules. Experimental and theoretical evidence for complementary
processes and processing streams are described below.

SOME COMPLEMENTARY PAIRS OF BRAIN PROCESSES

Boundary Surface
Boundary Motion
‘What’ learning and matching ‘Where’ learning and matching
Attentive learning Orienting search
Object tracking Optic  flow navigation
Color Luminance
Vergence Spherical angle
Motor expectation Volitional speed
Sensory cortical representation Learned motivational feedback
Working memory order Working memory rate

Table 1

In most of these cases, evidence for the existence of processing streams and their role in
behavior has been developed by many investigators. The fact that pairs of these streams exhibit
complementary computational properties, and that successive processing stages realize a
hierarchical resolution of uncertainty, has only gradually become clear through neural modeling,
primarily from our group and colleagues. Through a large number of such modeling studies, it
gradually became clear that different pairs of streams realize different combinations of
complementary properties, as illustrated below. As of this writing, so many streams seem to follow
this pattern that I now suggest that complementarity may be a general principle of brain design.

Complementary boundaries and surfaces in visual form perception.

Visual processing, from the retina through the inferotemporal and parietal cortices, provides
excellent examples of parallel processing streams (Figure 1). What evidence is there to suggest that
these streams compute complementary properties, and how is this done? A neural theory, called
FACADE (Form-And-Color-And-DEpth) theory, proposes that perceptual boundaries are formed
in the LGN-Blob-Thin Stripe-V4 stream while perceptual surfaces are formed in the LGN-
Interblob-Interstripe-V4 stream7. Many experiments have supported this prediction8-10.

FACADE theory suggests how and why perceptual boundaries and perceptual surfaces
compute complementary properties. Figure 2A illustrates three pairs of complementary properties
using the illusory contour percept of a Kanizsa square4. In response to both images of this figure,
boundaries form inwardly between cooperating pairs of incomplete disk (or pac man) inducers to
form the sides of the square. These boundaries are oriented to form in a collinear fashion between
like-oriented inducers. The square boundary in Figure 2A can be both seen and recognized because
of the enhanced illusory brightness of the Kanizsa square. In contrast, the square boundary in
Figure 2B can be recognized even though it is not visible; that is, there is no brightness or color
difference on either side of the boundary. Figure 2B shows that some boundaries can be recognized
even though they are invisible. FACADE theory predicts that all boundaries are invisible within the
boundary stream, which is proposed to occur in the Interblob cortical processing stream (Figure 1).
This prediction has not yet been directly tested through a neurophysiological experiment, although
several studies have shown the distinctness of a perceptual grouping, such as an illusory contour,
can be dissociated from the visible stimulus contrast that is associated with it11,12

.
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Figure 1.  Schematic diagram of anatomical
connections and neuronal selectivities of early
visual areas in the macaque monkey. LGN =
lateral geniculate nucleus (parvocellular
[parvo] and magnocellular [magno] divisions.
Divisions of visual areas V1 and V2; blob =
cytochrome oxidase blob regions, interblob =
cytochrome oxidase-poor regions
surrounding the blobs, 4B = lamina 4B, thin =
thin (narrow) cytochrome oxidase stripes,
interstripe = cytochrome oxidase-poor regions
between the thin and thick stripes, thick =
thick (wide) cytochrome oxidase stripes, V3 =
Visual Area 3, V4 = Visual Area(s) 4, and MT
= Middle Temporal area. Areas V2, V3, V4,
and MT have connections to other areas not
explicitly represented here. Area V3 may also
receive projections from V2 interstripes or
thin stripes. Heavy lines indicate robust
primary connections, and thin lines indicate
weaker, more variable connections. Dotted
lines represent observed connections that
require additional verification. Icons: rainbow
= tuned and/or opponent wavelength
selectivity (incidence at least 40%), angle
symbol = orientation selectivity (incidence at

least 20%), spectacles = binocular disparity selectivity and/or strong binocular interactions (V2;
incidence at least 20%), and right-pointing arrow = direction of motion selectivity (incidence at least
20%). Adapted with permission from Reference 1.

This invisible boundary in Figure 2B can be traced to the fact that its vertical boundaries
form between black and white inducers that possess opposite contrast polarity with respect to the
gray background. The same is true of the boundary around the gray disk in Figure 2C. In this
figure, the gray disk lies in front of a textured background whose contrasts with respect to the disk
reverse across space. In order to build a boundary around the entire disk, despite these contrast
reversals, the boundary system pools signals from opposite contrast polarities at each position. This
pooling process renders the boundary system output insensitive to contrast polarity. The boundary
system hereby loses its ability to represent visible colors or brightnesses, since its output cannot
signal the difference between dark and light. It is in this sense that “all boundaries are invisible”.
These properties of boundary completion are summarized in Figure 3. Figure 2D illustrates another
invisible boundary that can be consciously recognized. 

If boundaries are invisible, then how do we see anything? FACADE theory predicts that
visible properties of a scene are represented by the surface processing stream, which is predicted to
occur within the Blob cortical stream (Figure 1). A key step in representing a visible surface is
called filling-in. Why does a surface filling-in process occur? An early stage of surface processing
compensates for variable illumination, or ‘discounts the illuminant’13-1 5 in order to prevent
illuminant variations, which can change from moment to moment, from distorting all percepts.
Discounting the illuminant attenuates color and brightness signals except near regions of
sufficiently rapid surface change, such as edges or texture gradients, which are relatively
uncontaminated by illuminant variations. Later stages of surface formation fill in the attenuated
regions with these relatively uncontaminated color and brightness signals, and do so at the correct
relative depths from the observer through a process called surface capture. This multi-stage process
is an example of hierarchical resolution of uncertainty, because the later filling-in stage overcomes
uncertainties about brightness and color that were caused by discounting the illuminant at an earlier
processing stage.
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Figure 2.  A Kanizsa square (A) and a reverse-
contrast Kanizsa square (B). The emergent
Kanizsa square can be seen and recognized
because of the enhanced illusory brightness within
the illusory square. The reverse-contrast Kanizsa
square can be recognized but not seen. (C) The
boundary of the gray disk can form around its
entire circumference even though the relative
contrast between the disk and the white and black
background squares reverses periodically along
the circumference. (D) The vertical illusory
contour that forms at the ends of the horizontal
lines can be consciously recognized even though it
cannot be seen by virtue of any contrast difference
between it and the background.

How do the illuminant-discounted signals
fill-in an entire region? Filling-in behaves like a
diffusion of brightness across space15-17. In
response to the display in Figure 3, filling-in

spreads outwardly from the individual blue inducers in all directions. Its spread is thus unoriented.
How is this spread of activation contained? FACADE theory predicts that signals from the
boundary stream to the surface stream define the regions within which filling-in is restricted. This
prediction has not yet been neurophysiologically tested. Without these boundary signals, filling-in
would dissipate across space, and no surface percept could form. Invisible boundaries hereby
indirectly assure their own visibility through their interactions with the surface stream.

For example, in Figure 2A, the square boundary is induced by four black pac man disks that
are all less luminant than the white background. In the surface stream, discounting the illuminant
causes these pac men to induce local brightness contrasts within the boundary of the square. At a
subsequent processing stage, these brightness contrasts trigger surface filling-in within the square
boundary. The filled-in square is visible as a brightness difference because the filled-in activity level
within the square differs from the filled-in activity of the surrounding region. Filling-in can lead to
visible percepts because it is sensitive to contrast polarity. These three properties of surface filling-
in are summarized in Figure 3. They are easily seen to be complementary to the corresponding
properties of boundary completion.

 In Figure 2B, the opposite polarities of the two pairs of pac men with respect to the gray
background lead to approximately equal filled-in activities inside and outside the square, so the
boundary can be recognized but not seen. In Figure 2D, the white background can fill-in uniformly
on both sides of the vertical boundary, so no visible contrast difference is seen.

These remarks just begin the analysis of filling-in. Even in the seemingly simple case of the
Kanizsa square, one often perceives a square hovering in front of four partially occluded circular
disks, which seem to be completed behind the square. FACADE theory predicts how surface
filling-in is organized to help such figure-ground percepts to occur, in response to both two-
dimensional pictures and three-dimensional scenes7,18.

In summary, boundary and surface formation illustrate two key principles of brain
organization: hierarchical resolution of uncertainty, and complementary interstream interactions.
Figure 3 summarizes three pairs of complementary properties of the boundary and surface streams.
Hierarchical resolution of uncertainty is illustrated by surface filling-in: Discounting the illuminant
creates uncertainty by suppressing surface color and brightness signals except near surface
discontinuities. Higher stages of filling-in complete the surface representation using properties that
are complementary to those whereby boundaries are formed, guided by signals from these
boundaries7,15-17.
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Figure 3.  In this example of
neon color spreading, the color
in the blue contours spreads in
all directions until it fills the
square illusory contour. An
explanation of this percept is
given in reference (7). Three
complementary computational
properties of visual boundaries
and surfaces are also described.
Boundaries are predicted to be
completed within a Boundary
Contour System (BCS) that
passes through the Interblobs
of cortical area V1, whereas
surfaces are filled-in within a
Feature Contour System (FCS)
that passes through the Blobs
of cortical area V1 (see Fig.1).

Complementary form and motion interactions
A third parallel processing stream, passing through LGN-4B-Thick Stripe-MT, processes

motion information (Figure 1)19-21. Why does a separate motion stream exist? In what sense are
form and motion computations complementary? What do interactions between form and motion
accomplish from a functional point of view? Modeling work suggests how these streams and their
mutual interactions compensate for complementary deficiencies of each stream towards generating
percepts of moving-form-in-depth22,23. Such motion percepts are called ‘formotion’ percepts
because they arise from a form-motion interaction.

The form system uses orientationally tuned computations while the motion system
uses directionally tuned computations. In the formotion model, the processing of form by the
boundary stream uses orientationally tuned cells24 to generate emergent object representations, such
as the Kanizsa square (Figure 2). Such emergent boundary and surface representations, rather than
just the energy impinging on our retinas, define the form percepts of which we are consciously
aware. Precise orientationally tuned comparisons of left eye and right eye inputs are used to
compute sharp estimates of the relative depth of an object from its observer25,26, and thereby to form
three-dimensional boundary and surface representations of objects separated from their
backgrounds7.

How is this orientation information used by the motion stream? An object can contain
contours of many different orientations which all move in the same direction as part of the object’s
motion. Both psychophysical and neurophysiological experiments have shown that the motion
stream pools information from many orientations that are moving in the same direction to generate
precise estimates of a moving object’s direction and speed19-21, 27-29. Lesions of the form system
also show that, on its own, the motion system can make only coarse depth estimates30,31. Thus it
seems reasonable that the orientationally tuned form system generates emergent representations of
forms with precise depth estimates, whereas the directionally tuned motion system — on its own —
can generate only coarse depth estimates. In this conception, orientation and direction are
complementary properties, since orientation is computed parallel to a contour, whereas, at least in
the absence of contextual constraints, direction is computed perpendicular to it32.

How do the emergent object boundaries that are computed with precise depth estimates in
the form stream get injected into the motion stream and thereby enable the motion stream to track
emergent object representations in depth? How does the motion stream pool information across
space from multiple oriented contours to generate precise estimates of an object’s direction and
speed? These are large questions with complex answers on which many investigators are working.
Classical computational models of motion detection involving Reichardt-like or motion-energy

BOUNDARY COMPLETION        SURFACE FILLING-IN

oriented                                unoriented
inward                          outward
insensitive to contrast polarity sensitive to contrast polarity 
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mechanisms have focused on the recovery of local motion directions33-35. Cells in motion
processing areas like MT, however, are sensitive to both the direction and the speed of moving
patterns20,36. Indeed, both direction and speed estimates are needed to track moving objects. More
recent models have proposed how motion signals can be differentiated and pooled over multiple
orientations and spatial locations to form global estimates of both object direction and speed37.

The present discussion of motion perception focuses on how the complementary
uncertainties of the form and motion streams may be overcome by their interaction. There is
evidence for an interstream interaction from area V2 of the form stream to area MT of the motion
stream (Figure 1). This interaction could enable form representations to be tracked by the motion
stream at their correct depths as they move through time. A model of this formotion interaction has
successfully simulated many perceptual and brain data about motion perception22,23,37,38

. This model
predicts an important functional role for percepts of long-range apparent motion, whereby observers
perceive continuous motion between properly timed but spatially stationary flashes of color or
brightness. These continuous motion interpolations can be used to track targets, such as prey and
predators, that intermittently disappear as they move at variable rates behind occluding cover, such
as bushes and trees in a forest. The “flashes” are the intermittent appearances of the prey or
predator. This prediction has not yet been tested neurophysiologically.

Figure 4.  Images used to demonstrate that apparent
motion of illusory figures arises through interactions of
the static illusory figures, but not from the inducing
elements themselves. Frame 1 (row 1) is followed by
Frame 2 (row 2) in the same spatial locations. With
correctly chosen image sizes, distances, and temporal
displacements, an illusory square is seen to move
continuously from the inducers in the left picture of
Frame 1 to the inducers in the right picture of Frame 2.
Reprinted with permission from Reference 39

Figure 4 illustrates an experimental display that
vividly illustrates such a formotion interaction. In

Frame1, the pac men at the left side of the Figure define a Kanizsa square via the boundary
completion process that takes place within the form stream. In Frame 2, the pac men are replaced by
closed disks, and a square region is cleared in the line array to the right. As a result, an illusory
square forms adjacent to the line ends. The pac men and line arrays were designed so that none of
their features could be matched. Only the emergent squares have matching features. When Frame 2
is turned on right after Frame 1 is turned off, the square appears to move continuously from the pac
man array to the line array. This percept is an example of apparent motion, since nothing in the
images actually moves. The percept is a “double illusion” because both the emergent forms and
their motions are visual illusions. The theory suggests that the illusory square boundaries are
generated in the form stream before being injected into the motion stream, where they are the
successive “flashes” that generate a wave of apparent motion. Such displays, and their theoretical
explanation, also illustrate how the form system can help to create percepts of moving objects
whose boundaries are not explicitly defined within individual frames of a display.

Complementary expectation learning and matching during ‘what’ and ‘where’
processing.

Complementary form and motion processing are proposed to be part of a larger design for
complementary processing whereby objects in the world are cognitively recognized, spatially
localized, and acted upon. The form stream inputs to the inferotemporal cortex, whereas the motion
stream inputs to the parietal cortex (Figure 1). Many cognitive neuroscience experiments have
supported the hypotheses of Ungerleider and Mishkin40,41 and of Goodale and Milner42 that
inferotemporal cortex and its cortical projections learn to categorize and recognize what  objects are
in the world, whereas the parietal cortex and its cortical projections learn to determine where they
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are and how to deal with them by locating them in space, tracking them through time, and directing
actions towards them. This design thus separates sensory and cognitive processing from spatial and
motor processing.

These hypotheses have not, however, noted that sensory and cognitive learning processes
are complementary to spatial and motor learning processes on a mechanistic level. Neural modeling
has clarified how sensory and cognitive processes solve a key problem, called the ‘stability-
plasticity dilemma’43-45, and can thus rapidly and stably learn about the world throughout life
without catastrophically forgetting our previous experiences. In other words, we remain plastic and
open to new experiences without risking the stability of previously learned memories. This type of
fast stable learning enables us to become experts at dealing with changing environmental
conditions: Old knowledge representations can be refined by changing contingencies, and new ones
built up, without destroying the old ones due to catastrophic forgetting.

On the other hand, catastrophic forgetting is a good property for spatial and motor learning.
We have no need to remember all the spatial and motor representations (notably motor maps and
gains) that we used when we were children. In fact, the parameters that controlled our small
childhood limbs would cause major problems if they continued to control our larger and stronger
adult limbs. This forgetting property of the motor system should not be confused with the more
stable sensory and cognitive representations with which they interact that, for example, help us to
ride a bike after years of disuse.

These distinct ‘what’ and ‘where’ memory properties are proposed to follow from
complementary mechanisms whereby these systems learn expectations about the world, and match
these expectations against world data. To see how we use a sensory or cognitive expectation,
suppose you were asked to “find the yellow ball within one-half second, and you will win a
$10,000 prize”. Activating an expectation of ‘yellow balls’ enables more rapid detection of a
yellow ball, and with a more energetic neural response, than if you were not looking for it. Neural
correlates of such excitatory priming and gain control have been reported by several laboratories46-

52. Sensory and cognitive top-down expectations hereby lead to excitatory matching with
confirmatory bottom-up data. On the other hand, mismatch between top-down expectations and
bottom-up data can suppress the mismatched part of the bottom-up data, and thereby start to focus
attention upon the matched, or expected, part of the bottom-up data. This sort of excitatory matching
and attentional focusing of bottom-up data with top-down expectations is proposed to generate
resonant brain states that support conscious experiences43-45. Paradoxical data about conscious
perceptual experiences from several modalities have been explained as emergent properties of such
resonant states45.

In contrast, a motor expectation represents where we want to move, such as to the position
where our hand can grasp a desired object. Such a motor expectation is matched against where the
hand is. After the hand moves to the desired position, no further movement is required, and
movement stops. Motor expectations hereby control inhibitory matching. Inhibitory matching does
not lead to brain resonance, so motor processing is not conscious. In summary, in the present
theory, sensory and cognitive matching is excitatory, whereas spatial and motor matching is
inhibitory. These are complementary properties.
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Figure 5.  The LAMINART
model synthesis of bottom-up,
top-down, and horizontal
interactions in LGN, V1, and V2.
Cells and connections with open
symbols denote preattentive
excitatory mechanisms that are
involved in perceptual grouping.
Solid black symbols denote
inhibitory mechanisms. Dashed
symbols denote top-down
attentional mechanisms.

Recent modeling work predicts
some of the cells and circuits that
are proposed to carry out these
complementary types of
matching. For example, recent
modeling has suggested how top-
down sensory matching is
controlled in visual cortex,
notably from cortical area V2 to
V1, and by extension in other
sensory and cognitive neocortical
circuits53,54. This top-down circuit
is part of a larger model of how
bottom-up, top-down, and
horizontal interactions are
organized within the laminar

circuits of visual cortex; see Figure 5. The circuit generates top-down outputs from cortical layer 6
of V2 that activate, via a possibly polysynaptic pathway, layer 6 of V1. Cells in layer 6 of V1, in
turn, activate an on-center off-surround circuit to layer 4 of V1. (See below for more discussion of
on-center off-surround circuits.) The on-center is predicted to have a modulatory effect on layer 4,
due to the balancing of excitatory and inhibitory inputs to layer 4 within the on-center. The
inhibitory signals in the off-surround can suppress unattended visual features. This top-down
circuit realizes a type of folded feedback, whereby feedback inputs from V2 are folded back into the
feedforward flow of information from layer 6-to-4 of V1. The modulatory nature of the layer 6-to-4
connections helps to explain a curious fact about bottom-up cortical design: despite the fact that the
LGN activates layer 6 of V1 in a bottom-up fashion, a separate, direct excitatory pathway exists
from LGN to layer 4 of V1. It is predicted that this direct pathway is needed to enable the LGN to
drive layer 4 cells to suprathreshold activity levels, because the indirect LGN-6-4 pathway is
modulatory. The modeling articles summarize neurophysiological, anatomical, and psychophysical
experiments that are consistent with these predictions.

Recent modeling work also predicts some of the cells and circuits that are proposed to carry
out top-down motor matching, notably in cortical areas 4 and 555,56. Inhibitory matching is predicted
to occur between a Target Position Vector (TPV) that represents where we want to move our arm,
and a Present Position Vector (PPV) that computes an outflow representation of where the arm is
now (Figure 6). This comparison is proposed to occur at Difference Vector (DV) cells in cortical
area 5, which compute how far, and in what direction, the arm is commanded to move. This
Difference Vector is, in turn, predicted to be transmitted to cortical area 4, where is multiplicatively
gated by a GO signal that is under volitional control. Turning on the GO signal determines whether
the limb will move, and its amplitude scales the speed of movement. The product of DV and GO
hereby determined a Desired Velocity Vector (DVV). Such a DV is predicted to be computed at
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area 5 phasic cells, and its corresponding DDV at area 4 phasic MT cells. The modeling articles
summarize neurophysiological, anatomical, and psychophysical experiments that are consistent with
these predictions. It should also be noted that various other cell types within cortical areas 4 and 5
do not do inhibitory matching, and may even support resonant states.

Figure 6.  The VITE circuit
model. Thick connections
represent the kinematic feedback
control aspect of the model, with
thin connections representing
additional compensatory
circuitry. GO, scaleable gating
signal; DVV, desired velocity
vector; OPV, outflow position
vector; OFPV, outflow force +
position vector; SFV, static force
vector; IFV, inertial force vector;
CBM, assumed cerebello-cortical
input to the IFV stage; PPV,
perceived position vector; DV,

difference vector; TPV, target position vector; γd, dynamic gamma motoneuron; γs, static gamma
motoneuron; α, alpha motoneuron; Ia, type Ia afferent fiber; II, type II afferent fiber (position error
feedback); c.s., central sulcus; i.p.s., intraparietal sulcus. The symbol + represents excitation, –
represents inhibition, 5 represents multiplicative gating, and + ∫ represents integration.

The learning processes that accompany these complementary types of matching are also
proposed to exhibit complementary properties. Learning within the sensory and cognitive domain is
often match learning. Match learning occurs only if a good enough match occurs between active
top-down expectations and bottom-up information. When such an approximate match occurs,
previously stored knowledge can be refined. If novel information cannot form a good enough match
with the expectations that are read-out by previously learned recognition categories, then a memory
search is triggered that leads to selection and learning of a new recognition category, rather than
catastrophic forgetting of an old one43-45. In contrast, learning within spatial and motor processes is
proposed to be mismatch learning that continuously updates sensory-motor maps57 or the gains of
sensory-motor commands58,59. Thus both learning and matching within the ‘what’ and ‘where’
streams may have complementary properties. As a result, we can stably learn what is happening in a
changing world, thereby solving the stability-plasticity dilemma43-45, while adaptively updating our
representations of where objects are and how to act upon them using bodies whose parameters
change continuously through time57-59.

Complementary attentive-learning and orienting-search.

Match learning has the great advantage that it leads to stable memories in response to
changing environmental conditions. It also has a potentially disastrous disadvantage, however: If
you can only learn when there is a good enough match between bottom-up data and learned top-
down expectations, then how do you ever learn anything that you do not already know? Some
popular learning models, such as back propagation, try to escape this problem by assuming that the
brain does only ‘supervised learning’. During supervised learning, an explicit correct answer, or
teaching signal, is provided in response to every input. This teaching signal forces learning to track
the correct answer. Such a model cannot learn if an explicit answer is not provided. It appears,
however, that much human and animal learning, especially during the crucial early years of life,
takes place in a relatively unsupervised fashion.

Other models do allow ‘unsupervised learning’ to occur. Here, the key problem to be
solved is, that if a teacher is not available to force the selection and learning of a representation that
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can map onto a correct answer, then the internal dynamics of the model must do so on their own. In
order to escape the problem of not being able to learn something that one does not already know,
some of these models assume that we do already know (or, more exactly, have internal
representations for) everything that we may ever wish to know, and that experience just selects and
amplifies these representations60. These models depend upon the bottom-up filtering of inputs, and
a very large number of internal representations that respond to these filtered inputs, to provide
enough memory to represent whatever may happen. Having such a large number of representations
leads to a combinatorial explosion, with an implausibly large memory. Thus, although using a very
large number of representations can help with the problem of catastrophic forgetting, it creates
other, equally serious, problems instead. Other unsupervised learning models shut down learning as
time goes on in order to avoid catastrophic forgetting61.

I propose that these problems are averted in the brain through the use of another
complementary interaction, which was briefly mentioned above. This complementary interaction
helps to balance between processing the familiar and the unfamiliar, the expected and the
unexpected. It does so using complementary processes of resonance and reset, which are predicted
to subserve properties of attention and memory search, respectively. This interaction enables the
brain to discover and stably learn new representations for novel events in an efficient way, without
assuming that representations already exist for as yet unexperienced events. It hereby solves the
combinatorial explosion while also solving the stability-plasticity dilemma.

Figure 7.  Search for a recognition code within an
ART learning circuit: (A) The input pattern I is
instated across the feature detectors at level F1 as a
short term memory (STM) activity pattern X.
Input I also nonspecifically activates the orienting
subsystem A. STM pattern X is represented by
the hatched pattern across F1. Pattern X both
inhibits A and generates the output pattern S.
Pattern S is multiplied by long term memory
(LTM) traces, or learned adapative weights. These
LTM-gated signals are added at F2 nodes to form
the input pattern T, which activates the STM
pattern Y across the recognition categories coded
at level F2. (B) Pattern Y generates the top-down
output pattern U which is multiplied by top-down
LTM traces and added at F1 nodes to form the
prototype pattern V that encodes the learned
expectation of the active F2 nodes. If V
mismatches I at F1, then a new STM activity
pattern X*  is generated at F1. X*  is represented
by the hatched pattern. It includes the features of I
that are confirmed by V. Mismatched features are
inhibited. The inactivated nodes corresponding to

unconfirmed features of X are unhatched. The reduction in total STM activity which occurs when X
is transformed into X*  causes a decrease in the total inhibition from F1 to A. (C) If inhibition
decreases sufficiently, A releases a nonspecific arousal wave to F2, which resets the STM pattern Y
at F2. (D) After Y is inhibited, its top-down prototype signal is eliminated, and X can be reinstated
at F1. Enduring traces of the prior reset lead X to activate a different STM pattern Y at F2. If the
top-down prototype due to Y also mismatches I at F1, then the search for an appropriate F2 code
continues until a more appropriate F2 representation is selected. Then an attentive resonance
develops and learning of the attended data is initiated.
[Reprinted with permission from reference [45].]
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One of these complementary subsystems is just the ‘what’ stream that was described above,
with its top-down expectations that are matched against bottom-up inputs. When a recognition
category activates a top-down expectation that achieves a good enough match with bottom-up data,
this match process focuses attention upon those feature clusters in the bottom-up input that are
expected (Figure 7). Experimental evidence for such matching and attentional processes has been
found in neurophysiological data about perception and recognition48,50,62-66. Many behavioral and
neural data have been explained by assuming that such top-down feedback processes can lead to
resonant brain states that play a key role in dynamically stabilizing both developmental and learning
processes43-45,53, 67-69.

How does a sufficiently bad mismatch between an active top-down expectation and a
bottom-up input drive a memory search, say because the input represents an unfamiliar type of
experience? This mismatch within the attentional system is proposed to activate a complementary
orienting system, which is sensitive to unexpected and unfamiliar events. Output signals from the
orienting system rapidly reset the recognition category that has been reading out the poorly
matching top-down expectation (Figure 7B and 7C). The cause of the mismatch is hereby removed,
thereby freeing the system to activate a different recognition category (Figure 7D). The reset event
hereby triggers memory search, or hypothesis testing, which automatically leads to the selection of a
recognition category that can better match the input. If no such recognition category exists, say
because the bottom-up input represents a truly novel experience, then the search process can
automatically activate an as yet uncommitted population of cells, with which to learn about the novel
information. This learning process works well under both unsupervised and supervised conditions.
Supervision can force a search for new categories that may be culturally determined, and are not
based on feature similarity alone. For example, separating the letters E and F into separate
recognition categories is culturally determined; they are quite similar based on visual similarity
alone. Taken together, the interacting processes of attentive-learning and orienting-search realize a
type of error correction through hypothesis testing that can build an ever-growing, self-refining
internal model of a changing world.

The complementary attentive-learning and orienting-search subsystems and how they
interact have been progressively developed since the 1970’s within Adaptive Resonance Theory, or
ART43-45. Neurobiological data have elsewhere been reviewed in support of the ART hypothesis that
the attentive-learning system includes such ‘what’ processing regions as inferotemporal cortex and
its projections in prefrontal cortex, whereas the orienting-search system includes circuits of the
hippocampal system45. Data about mismatch cells in the hippocampal system are particularly
relevant to this hypothesis70. ART predicts that these interactions between inferotemporal cortex and
the hippocampal system during a mismatch event offset the inability of the ‘what’ processing
stream to search for and learn appropriate new recognition codes on its own. This deficiency of the
‘what’ stream has been used to predict how hippocampal lesions can lead to symptoms of amnesic
memory45. Because of their ability to learn stably in real-time about large amounts of information in
a rapidly changing world, ART models have also been used in pattern recognition applications in
technology71.

Complementary additive and subtractive intrastream processing.

The two types of matching across the ‘what’ and ‘where’ processing streams use different
combinations of excitatory and inhibitory neural signals. Complementary processes can also arise
within a processing stream. Thus, a processing stream may be broken into complementary
substreams. Several examples will now be mentioned wherein parallel combinations of additive and
subtractive neural signals can be computed within a single processing stream. A classical example
in the ‘what’ processing stream combines outputs from long-wave length (L) and medium wave-
length (M) retinal photoreceptors into parallel luminance (L + M) and color (L - M) channels72.
The color channels compute reflectances, or ratios, by discounting the illuminant, while the
luminance channel computes luminant energy. By using both channels, the illuminant can be
discounted without throwing away information about luminant energy.
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Intrastream complementarity also seems to occur within the ‘where’ stream. Here, cortical
area MT activates area MST (not shown in Figure 1) on the way to parietal cortex. In macaque
monkeys, the ventral part of MST helps to track moving visual objects, whereas dorsal MST helps
to navigate in the world using global properties of optic flow73,74. These tasks are behaviorally
complementary: the former tracks an object moving in the world with respect to an observer,
whereas the latter navigates a moving observer with respect to the world. The tasks are also
neurophysiologically complementary: Neurons in ventral MST compute the relative motion of an
object with respect to its background by subtracting background motion from object motion;
whereas neurons in dorsal MST compute motions of a wide textured field by adding motion
signals over a large visual domain74. Corresponding to MST’s breakdown into additive and
subtractive subregions, area MT of owl monkeys possesses distinct bands and interbands75. Band
cells have additive receptive fields for visual navigation, whereas interband cells have subtractive
receptive fields for computing object-relative motion. Modeling studies have shown how these
complementary properties can be used, on the one hand, for visual navigation using optical flow
information and, on the other hand, for predictive tracking of moving targets using smooth pursuit
eye movements76,77. These studies make a number of neurophysiological predictions, including how
the log polar mapping that is defined by the cortical magnification factor helps to achieve good
navigational properties. A remarkable prediction is that the biologically observed spiral tuning
curves that were found by Graziano et al.78 in cortical area MST maximize the amount of position
invariance of which the positionally-variant log polar map is capable.

Intrastream complementarity is also predicted to occur during sensory-motor control, or
‘how’ processing. To see this, suppose that both eyes fixate an object that can be reached by the
arms. Psychophysical79 and neurophysiological data80,81 suggest that the vergence of the two eyes,
as they fixate the object, is used to estimate the object’s radial distance, while the spherical angles
that the eyes make relative to the observer’s head estimate the object’s angular position. Distance
and angle are mathematically independent properties of an object’s position with respect to an
observer. How does the brain compute the distance and angle to an object that the eyes are fixating?
A neural model proposes how addition and subtraction can again realize the necessary
computations by exploiting the bilateral symmetry of the body57. In particular, eye movement
control pathways give rise to parallel branches, called corollary discharges, that inform other brain
systems of the present position of the eyes13. These outflow movement control pathways have an
opponent organization to control the body’s agonist and antagonist muscles. Neural modeling has
mathematically proved that, when both eyes fixate an object, accurate spherical angle and vergence
estimates of object position may be derived by adding and subtracting, respectively, the ocular
corollary discharges that control the two eyes, while preserving their opponent relationships, at
separate populations of cells57.

These examples illustrate how a rich repertoire of complementary behavioral capabilities can
be derived by doing “brain arithmetic”, whereby outputs of a processing stage are segregated into
additive and subtractive parallel computations at a subsequent processing stage. Such additive and
subtractive combinations can occur both between processing streams and within a single processing
stream. These simple computations generate very different behavioral properties when applied to
different sensory inputs or different stages of a processing stream. The next sections illustrate
several ways in which complementary multiplication and division operations may enter the brain’s
“arithmetic” repertoire.

Factorization of pattern and energy: ratio processing and synchrony

Multiplication and division occur during processes that illustrate the general theme of how
the brain achieves factorization of pattern and energy67. ‘Pattern’ here refers to the hypothesis that
the brain’s functional units of short-term representation of information, and of long-term learning
about this information, are distributed patterns of activation and of synaptic weight, respectively,
across a neuronal network. ‘Energy’ refers to the mechanisms whereby pattern processing is
turned on and off by activity-dependent modulatory processes.

Why do pattern and energy need to be processed separately? Why cannot a single process
do both? One reason is that cell activities can fluctuate within only a narrow dynamic range. Often
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input amplitudes can vary over a much wider dynamic range. For example, if a large number of
input pathways converge on a cell, then the number of active input pathways can vary greatly
through time, and with it, the total size of the cell input. Owing to the small dynamic range of the
cell, its activity could easily become saturated when a large number of inputs is active. If all the cells
got saturated, then their activities could not sensitively represent the relative size, and thus
importance, of their respective inputs. One way to prevent this would be to require that each
individual input be chosen very small so that the sum of all inputs would not saturate cell activity.
But such small individual inputs could easily be lost in cellular noise. The cell’s small dynamic
range could hereby make it insensitive to both small and large inputs as a result of noise and
saturation, respectively, at the lower and upper extremes of the cell’s dynamic range. This noise-
saturation dilemma faces all biological cells, not merely nerve cells. Interactions across a network
of cells is needed to preserve information about the relative sizes of inputs to the cells in the
network, and thereby overcome noise and saturation. This kind of pattern processing sacrifices
information about the absolute amplitude of inputs in order to enable the cells to respond sensitively
to their relative size, over a wide dynamic range. Since the pattern processing network discards
information about absolute input size, a separate channel is needed to track information about the
total  amplitude, or ‘energy’, of the inputs.

Retaining sensitivity to the relative size of inputs can be accomplished by on-center off-
surround interactions between cells that obey the membrane equations of neurophysiology67,82,83. In
a feedforward on-center, off-surround network, feedforward inputs excite their target cells while
inhibiting more distant cells. To store inputs temporarily in short-term (or working) memory,
excitatory feedback between nearby cells and inhibitory feedback between more distant cells can
solve the noise-saturation dilemma. Stated using more general terms, these networks define mass-
action interactions among short-range cooperative and longer-range competitive inputs or activities.
The mass action terms of membrane equations introduce multiplication into brain arithmetic by
multiplying cell inputs with cell voltages, or activities. Membrane equations respond to on-center
off-surround interactions by dividing each cell’s activity by a weighted sum of all the cell inputs (in
a feedforward interaction) or activities (in a feedback interaction) with which it interacts. This
operation keeps cell activities away from the saturation range by normalizing them while preserving
their sensitivity to input ratios.

The ubiquitous nature of the noise-saturation dilemma in all cellular tissues clarifies why
such on-center off-surround anatomies are found throughout the brain. For example, when ratio
processing and normalization occur during visual perception, they help to control brightness
constancy and contrast15,16 as well as perceptual grouping and attention53,54,84,85. At higher levels of
cognitive processing, these mechanisms can provide a neural explanation of the ‘limited capacity’
of cognitive short-term memory68.

The cooperative-competitive interactions that preserve cell sensitivity to relative input size
also bind these cell activities into functional units. Indeed, relative activities need to be computed
synchronously, and early theorems about short-term memory and long-term memory processing67

predicted an important role for synchronous processing between the interacting cells. Subsequent
neurophysiological experiments have emphasized the functional importance of synchronous brain
states86,87. More recent neural modeling has shown how such synchronized activity patterns can, for
example, quantitatively explain psychophysical data about temporal order judgments during
perceptual grouping within the visual cortex88.

Motor expectation and volition

Factorization of pattern and energy shows itself in many guises. For example, it helps to
explain how motor expectations (pattern) interact with volitional speed signals (energy) to generate
goal-directed arm movements89-91, as during the computation of the Desired Velocity Vector in the
cortical area 4 circuit of Figure 6. As noted in the discussion of ‘where’ and ‘how’ processing, a
motor expectation represents where we want to move, such as to the position where our hand can
grasp a desired object. Such a motor representation, or Target Position Vector (TPV), can prime a
movement, or get us ready to make a movement, but by itself, it cannot release the movement55,89.
First the TPV needs to be converted into a Difference Vector (DV), which triggers an overt action
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only when a volitional signal90 that multiplicatively gates action read-out. The volitional signal for
controlling movement speed is called a GO signal, as in Figure 6. The signal for controlling size is
called a GRO signal. Neural models have predicted how such GO and GRO signals may, for
example, alter the size and speed of handwritten script without altering its form91. As noted in
Figure 6, some motor expectations seem to be computed in the parietal and motor cortex. Volitional
signals seem to be computed within the basal ganglia90.

The Vector Integration to Endpoint, or VITE, neural model, summarized in Figure 6, of how
these arm-controlling pattern and energy factors combine within cortical areas 4 and 5 has been
used to predict the functional roles of six identified cortical cell types, and to quantitatively simulate
their temporal responses during a wide range of behavioral tasks55,56. These results support model
hypotheses about how variable-speed and variable-force arm movements can be carried out in the
presence of obstacles. The model hereby provides a detailed example of how task-sensitive
volitional control of action realizes an overall separation into pattern and energy variables.

Figure 8.  Schematic conditioning
circuit: Conditioned stimuli (CSi)
activate sensory categories (SCSi),
which compete among themselves for
limited capacity short-term memory
activation and storage. The activated
SCsi representations, i = 1, 2, elicit
trainable signals to drive
representations D and motor
command representations M.
Learning from a sensory
representation SCSi to a drive
representation D is called conditioned
reinforcer learning. Learning from D
to a SCSi is called incentive
motivational learning. Signals from D
to SCSi are elicited when the
combination of conditioned sensory
plus internal drive inputs is
sufficiently large. Sensory
representations that win the

competition in response to the balance of external inputs and internal motivational signals can
activate motor command pathways

Cognitive-emotional interactions and attentional blocking

Cognitive-emotional learning enables sensory and cognitive events to acquire emotional and
motivational significance. Both classical and instrumental conditioning can be used for this
purpose92-95. For example, during classical conditioning, an irrelevant sensory cue, or conditioned
stimulus (CS), is paired with a reinforcing event, or unconditioned stimulus (US). The CS hereby
acquires some of the reinforcing properties of the US; it becomes a “conditioned reinforcer” with
its own motivational properties. The manner in which the thalamocortical representation of a
conditioned reinforcer CS is influenced by motivational signals represents, I suggest, another
example of factorization of pattern and energy. Here, the activities across the thalamocortical
representations of recently presented sensory events, including the CS, constitute the “pattern”.
This pattern is normalized by the feedback on-center off-surround interactions that are used to store
the activities in short-term memory without saturation. If one or more of these sensory events is a
conditioned reinforcer, then it can amplify its own activity via learned motivational feedback signals,
which play the role of “energy” in this example45,67. These amplified representations can, in turn,
attentionally block94, or inhibit, the representations of irrelevant sensory events via the off-surround



3/15/00

16

of the feedback network. Attentional blocking is one of the key mechanisms whereby animals learn
which consequences are causally predicted by their antecedent sensory cues and actions, and which
consequences are merely accidental. A more detailed summary of how blocking is proposed to
happen is now given.

During cognitive-emotional learning, at least three types of internal representations interact:
Sensory and cognitive representations (S), drive representations (D), and motor representations
(M)45,67, as depicted in Figure 8. The sensory representations S are thalamocortical representations
of external events, like the ones described above within the ‘what’ processing stream. They include
representations of CSs. D representations include the hypothalamic and amygdala circuits at which
homeostatic and reinforcing cues converge to generate emotional reactions and motivational
decisions96-98. M representations include cortical and cerebellar circuits for controlling discrete
adaptive responses59,99. As noted above, the S representations represent the pattern information in
this example. They interact with one another via an on-center off-surround feedback network that
stores their activities in short-term memory, while also solving the noise-saturation dilemma. The D
representations supply modulatory energy owing to the action of the following types of learning
processes:

 (1) ‘Conditioned reinforcer learning’ occurs in the S  D pathways, and enables a sensory
event, such as a conditioned stimulus CS, to become a conditioned reinforcer that can activate a
drive representation D. This may be accomplished by pairing the CS with an unconditioned
stimulus US. The CS activates its sensory representation S. The US activates its own sensory
representation, which in turn activates the drive representation D. Adaptive weights in the S  D
pathway can grow in response to this correlated activity. Future presentations of the CS can hereby
lead to activation of D, which controls various emotional and motivational responses.

(2) Due to this pairing of CS and US, ‘incentive motivational learning’ can also occur in the
adaptive weights within the D  S pathway. This type of learning allows an activated drive
representation D to prime, or modulate, the sensory representations S of all sensory events that have
consistently been activated with it in the past. Speaking intuitively, these sensory events are
motivationally compatible with D.

(3) S  M ‘habit learning’, or motor learning, trains the sensorimotor maps and gains that
control appropriate and accurately calibrated responses to the CS. These processes include circuits
such as those summarized in Figure 6.

Conditioned reinforcer learning and incentive motivational learning combine to control
attentional blocking in the following way. As noted above, the sensory representations S are the
pattern variables that store sensory and cognitive representations in short-term memory using on-
center off-surround feedback networks. Due to the self-normalizing properties of these networks,
the total  activity that can be stored in short-term memory across the entire network is limited. This
is thus, once again, an example of the noise-saturation dilemma. Due to activity normalization,
sufficiently great activation of one sensory representation implies that other sensory representations
cannot be stored in short-term memory. In the present example, conditioning of a CS to a US
strengthens both its S  D conditioned reinforcer and D  S incentive motivational pathways.
Thus, when a conditioned reinforcer CS activates its sensory representation S, learned S  D  S
positive feedback quickly amplifies the activity of S. This S  D  S feedback pathway supplies
the motivational energy that focuses attention upon salient conditioned reinforcers. These amplified
sensory representations inhibit the storage of other sensory cues in short-term memory via the
lateral inhibition that exists among the sensory representations S. Blocking is hereby explained
using incentive motivational “energy” to amplify conditioned reinforcer CS representations within
the self-normalized sensory “pattern” that is stored in short-term memory. This S  D  S
feedback causes a cognitive-emotional resonance to occur. The model prediction of how drive
representations D, such as those in the amgydala, influence blocking by delivering incentive
motivational feedback to thalamocortical sensory representations has not yet been tested
neurophysiologically.
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Rate-invariant speech and language understanding

Factorization of pattern and energy also seems to play an important role in temporally
organized cognitive processes such as speech and language. Here sequences of events are
transformed into temporally evolving spatial patterns of activation that are stored within working
memories100. The ‘pattern’ information that is stored in working memory represents both the event
itself—it’s so-called item information—and the temporal order in which the events occurred. The
‘energy’ information encodes both the temporal rate and rhythm with which the events occur68.
Factorization of information about item and order from information about rate and rhythm helps us
to understand speech that is spoken at variable rates: A rate-invariant representation of speech and
language in working memory avoids the need to define multiple representations of the same speech
and language utterance at every conceivable rate. This representation can, in turn, be used to learn
speech and language codes, or categories, that are themselves not too sensitive to speech rate.
Because rate and rhythm information are substantially eliminated from the rate-invariant working
memory representation, rate and rhythm need to be computed by a separate process. This is a
problem of factorization, rather than of independent representation, because the speech rate and
rhythm that are perceived depend upon the categorical language units, such as syllables and words,
that are familiar to the listener. What these language units are, in turn, depends upon how the
listener has learned to group together, and categorize, the temporally distributed speech and
language features that have previously been stored in the rate-invariant working memory.

Rate-invariant working memories can be designed from specialized versions of the on-
center off-surround feedback networks that are used to solve the noise-saturation dilemma67,68,101.
In other words, the networks that are used to store spatially distributed feature patterns, without a
loss of sensitivity to their identity and relative size, can be specialized to store temporally distributed
events, without a loss of sensitivity to their identity and temporal order. The normalization of these
stored activities is the basis for their rate-invariant properties. Thus, this model predicts that a
process like discounting the illuminant, in the spatial domain, uses a variant of the same
mechanisms that are used to process rate-invariant speech, in the temporal domain. A key problem
concerns how the rate-invariant working memory can maintain the same representation as the
speech rate speeds up. The model predicts that the ‘energy’ information that is computed from the
speech rate and rhythm can be used to automatically gain-control the processing rate of the working
memory to maintain its rate-invariant speech properties102. In particular, the rate at which the
working memory stores individual events needs to keep up with the overall rate at which successive
speech sounds are presented. A neural model of this process has been progressively developed to
quantitatively simulate psychophysical data concerning the categorization of variable-rate speech by
human subjects69,102,103, and to functionally interpret neurophysiological data that are consistent
with model properties103. In this model, the working memory interacts with a categorization network
via bottom-up and top-down pathways, and conscious speech is a resonant wave that emerges
through these interactions.

Beyond modularity

Much experimental evidence has supported the idea that the brain is organized into
processing streams, but how these streams are determined and how they interact to generate
behavior is still a topic of active research. This article has summarized some of the rapidly growing
empirical and theoretical evidence that our brains compute complementary operations within
parallel pairs of processing streams. Table 1 summarizes some of the processes for which
evidence of complementarity has been collected from behavioral and neural data and models. The
variety of these behavioral processes provides some indication of the generality of this
organizational principle in the brain. Interstream interactions are proposed to overcome
complementary processing deficiencies within each stream. Hierarchical interactions between the
several levels of each processing stream are proposed to overcome informational uncertainties that
occur at individual processing stages within that stream. Hierarchical intrastream interactions and
parallel interstream interactions work together to generate behavioral properties that are free from
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these uncertainties and complementary insufficiencies. Such complementary processing may occur
on multiple scales of brain organization.

Many experimentalists have described properties of functional specialization and integration
in their neural data. Some neural modelers have attempted to characterize such properties using
concepts about how the brain may work to achieve information maximization. Information, as a
technical concept, is well defined for stationary information channels, or channels whose statistical
properties tend to persist through time. In contrast, brains self-organize on a relatively fast time
scale through development and life-long learning, and do so in response to nonstationary, or rapidly
changing, statistical properties of their environments. I propose that hierarchical intrastream
interactions and parallel interstream interactions between complementary systems are a
manifestation of this capacity for self-controlled and stable self-organization. This observation leads
to my final remarks.

How do complementary sets of properties arise, rather than some other combination of
properties? How is the organization of smaller-scale complementary properties organized within
larger-scale complementary properties? The simplest hypothesis, for which little direct experimental
evidence is yet available, is that each pair of complementary processes represents two sides of a
larger brain system. Complementarity could arise if, during brain development, precursors of the
larger system bifurcated into complementary streams through a process of symmetry-breaking that
operates on multiple scales of organization. In this view, complementary systems are an integral part
of the self-organization process that enables the brain to adapt to a rapidly changing world. This
view of brain development is not in conflict with prevailing views of specific developmental
mechanisms104. Rather, it points to a global organizational principle that may be capable of
coordinating them.

Thus, just as in the organization of the physical world with which it interacts, it is proposed
that the brain is organized to obey principles of complementarity, uncertainty, and symmetry-
breaking. In fact, it can be argued that known complementary properties exist because of the need to
process complementary types of information in the environment. The processes that form
perceptual boundaries and surfaces provide a particularly clear example of this hypothesis. The
‘complementary brain’ may thus perhaps best be understood through analyses of the cycles of
perception, cognition, emotion, and action whereby the brain is intimately linked to its physical
environment through a continuously operating feedback cycle. One useful goal of future research
may be to study more directly how complementary aspects of the physical world are translated into
complementary brain designs for coping with this world.

REFERENCES

1. DeYoe, E.A. and van Essen, D.C. (1988) Concurrent processing streams in monkey visual
cortex Trends in Neurosci. 11, 219–226

2. Egusa, H. (1983) Effects of brightness, hue, and saturation on perceived depth between adjacent
regions in the visual field Perception 12, 167–175

3. Faubert, J. and von Grunau, M. (1995) The influence of two spatially distinct primers and
attribute priming on motion induction Vision Res. 35, 3119–3130

4. Kanizsa, G. (1974) Contours without gradients or cognitive contours Italian J. Psychol. 1,
93–113

5. Pessoa, L., Beck, J. and Mingolla, E. (1996) Perceived texture segregation in chromatic element-
arrangement patterns: High Intensity interference Vision Res. 36, 1745–1760

6. Smallman, H.S. and McKee, S.P. (1995) A contrast ratio constraint on stereo matching Proc.
Royal Soc. Lond., B . 260, 265–271

7. Grossberg, S. (1994) 3-D vision and figure-ground separation by visual cortex Percept. and
Psychophys. 55, 48–120

8. Elder, J.H. and Zucker, S.W. (1998) Evidence for boundary-specific grouping Vision Res. 38,
143–152

9. Rogers-Ramachandran, D.C. and Ramachandran, V.S. (1998) Psychophysical evidence for
boundary and surface systems in human vision Vision Res. 38, 71–77



3/15/00

19

10. Lamme, V.A.F., Rodriguez-Rodriguez, V. and Spekreijse, H. (1999) Separate processing
dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque
monkey Cereb. Cortex 9, 406–413

11. Hess, R.F., Dakin, S.C. and Field, D.J. (1998) The role of “contrast enhancement” in the
detection and appearance of visual contours Vision Res. 38, 783–787

12. Petry, S. and Meyer, G. (Eds.), (1987) The Perception of Illusory Contours, Springer-Verlag
13. Helmholtz, H.L.F. von (1910/1925) Treatise on Physiological Optics, Dover Press
14. Land, E.H. (1977) The retinex theory of color vision Scient. Amer. 237, 108–128
15. Grossberg, S. and Todorovic´, D. (1988) Neural dynamics of 1-D and 2-D brightness

perception: A unified model of classical and recent phenomena Percept. and Psychophys. 43,
723–742

16. Arrington, K.F. (1994) The temporal dynamics of brightness filling-in Vision Res. 34,
3371–3387

17. Paradiso, M. A. and Nakayama, K. (1991) Brightness perception and filling-in Vision Res. 31,
1221–1236

18. Grossberg, S. (1997) Cortical dynamics of three-dimensional figure-ground perception of two-
dimensional pictures Psychol. Rev. 104, 618–658

19. Albright, T.D., Desimone, R. and Gross, C.G. (1984) Columnar organization of directionally
sensitive cells in visual area MT of the macaque J. Neurophysiol. 51, 16–31

20. Maunsell, J.H.R. and van Essen, D.C. (1983) Response properties of single units in middle
temporal visual area of the macaque monkey. I. Selectivity for stimulus duration, speed, and
orientation J. Neurophysiol. 49, 1127–1147

21. Newsome, W.T., Gizzi, M.S. and Movshon, J.A. (1983) Spatial and temporal properties of
neurons in macaque MT Invest. Ophthal. and Visual Sci. 24, 106

22. Baloch, A.A. and Grossberg, S. (1997) A neural model of high-level motion processing: Line
motion and formotion dynamics Vision Res. 37, 3037–3059

23. Francis, G. and Grossberg, S. (1996) Cortical dynamics of form and motion integration:
Persistence, apparent motion, and illusory contours Vision Res. 36, 149–173

24. Hubel, D.H. and Wiesel, T.N. (1977) Functional architecture of macaque monkey visual cortex
Proc. Royal Soc. Lond., B. 198, 1–59

25. Ohzawa, I., DeAngelis, G.C. and Freeman, R.D. (1990) Stereoscopic depth discrimination by
the visual cortex: Neurons ideally suited as disparity detectors Science 249, 1037–1041

26. von der Heydt, R., Hanny, P. and Dursteler, M.R. (1981) The role of orientation disparity in
stereoscopic perception and the development of binocular correspondence, in Advances in
Physiological Science, Sensory Functions (Grastyan, E. and Molnar, P., eds.) Vol. 16, Pergram
Press

27. Ben-Av, M.B. and Shiffrar, M. (1995) Disambiguating velocity estimates across image space
Vision Res. 35, 2889–2895

28. Watanabe, T. (1997) Velocity decomposition and surface decomposition — reciprocal
interactions between motion and form processing Vision Res. 37, 2879–2889

29. Wuerger, S., Shapley, R. and Rubin, N. (1996) “On the visually perceived direction of motion”
by Hans Wallach: 60 years later Perception 25, 1317–1367

30. Logothetis, N.K., Schiller, P.H., Charles, E.R. and Hurlbert, A.C. (1990) Perceptual deficits and
the activity of the color-opponent and broad-band pathways at isoluminance Science 247,
214–217

31. Schiller, P.H., Logothetis, N.K. and Charles, E.R. (1990) Role of the color-opponent and
broad-band channels in vision Visual Neurosci. 5, 321–326

32. Wallach, H. (1976) On Perception, Quadrangle Press
33. Adelson, E.H. and Bergen, J.R. (1985) Spatiotemporal energy models for the perception of

motion J. Optical Soc. Amer. 2, 284–299
34. van Santen, J.P.H. and Sperling, G. (1984) Temporal covariance model of human motion

perception J. Opt. Soc. Amer. 1, 451–473
35. Watson, B. and Ahumada, A.E.J. (1985) Model of human visual-motion sensing J. Opt. Soc.

Amer. 2, 322–342



3/15/00

20

36. Allman, J., Miezin, F. and McGuinness, E. (1985) Direction- and velocity-specific responses
from beyond the classical receptive field in the middle temporal visual area (MT) Perception 14,
105–126

37. Chey, J., Grossberg, S. and Mingolla, E. (1997) Neural dynamics of motion grouping: From
aperture ambiguity to object speed and direction J. Optical Soc. Amer. A. 14, 2570–2594

38. Grossberg, S. and Rudd, M. (1992) Cortical dynamics of visual motion perception: Short-range
and long-range apparent motion Psychol. Rev. 99, 78–121

39. Ramachandran, V.S. (1985) Apparent motion of subjective surfaces Perception 14, 127–134
40. Ungerleider, L.G. and Mishkin, M. (1982) Two cortical visual systems: Separation of

appearance and location of objects, in Analysis of Visual Behavior (Ingle D.L., Goodale, M.A.
and Mansfield, R.J.W., eds.), pp. 549–586, MIT Press

41. Mishkin, M., Ungerleider, L.G. and Macko, K.A. (1983) Object vision and spatial vision: Two
cortical pathways Trends in Neurosci. 6, 414–417

42. Goodale, M.A. and Milner, D. (1992) Separate visual pathways for perception and action
Trends in Neurosci. 15, 10–25

43. Carpenter, G.A. and Grossberg, S., eds. (1991) Pattern Recognition by Self-Organizing Neural
Networks, MIT Press

44. Grossberg, S. (1999) The link between brain learning, attention, and consciousness
Consciousness and Cognition 8, 1–44

45. Grossberg, S. and Merrill, J.W.L. (1996) The hippocampus and cerebellum in adaptively timed
learning, recognition, and movement J. Cognitive Neurosci. 8, 257–277

46. Motter, B.C. (1993) Focal attention produces spatially selective processing in visual cortical
areas V1, V2, and V4 in the presence of competing stimuli J. Neurophysiol. 70, 909–919

47. Watanabe, T., Sasaki, Y., Nielsen, M., Takino, R. and Miyakawa, S. (1998) Attention-regulated
activity in human primary visual cortex J. Neurophysiol. 79, 2218–2221

48. Roelfsema, P.R., Lamme, V.A.F. and Spekreijse, H. (1998) Object-based attention in the
primary visual cortex of the macaque monkey Nature 395, 376–381

49. Kapadia, M.K., Ito, M., Gilbert, C.D. and Westheimer, G. (1995) Improvement in visual
sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert
monkeys Neuron 15, 843–856

50. Hupé, J.M., James, A.C., Payne, B.R., Lomber, S.G., Girard, P. and Bullier, J. (1998) Cortical
feedback improves discrimination between figure and background by V1, V2 and V3 neurons
Nature 394, 784–787

51. Reynolds, J., Nicholas, J. Chelazzi, L. and Desimone, R. (1999) Competitive mechanisms
subserve attention in macaque areas V2 and V4 J. Neurosci. 19, 1736–1753

52. Luck, S.J., Chelazzi, L., Hillyard, S.A. and Desimone, R. (1997) Neural mechanisms of spatial
selective attention in areas V1, V2, and V4 of macaque visual cortex J. Neurophysiol. 77, 24–42

53. Grossberg, S. (1999) How does the cerebral cortex work? Learning, attention, and grouping by
the laminar circuits of visual cortex Spatial Vision 12, 163–187

54. Grossberg, S. and Raizada, R. (2000) Contrast-sensitive perceptual grouping and object-based
attention in the laminar circuits of primary visual cortex Vision Res., in press

55. Bullock, D., Cisek, P. and Grossberg, S. (1998) Cortical networks for control of voluntary arm
movements under variable force conditions Cerebral Cortex 8, 48–62

56. Cisek, P. Bullock, D. and Grossberg, S. (1998) A cortico-spinal model of reaching and
proprioception under multiple task constraints J. Cognit. Neurosci. 10, 425–444

57. Guenther, F.H., Bullock, D., Greve, D. and Grossberg, S. (1994) Neural representations for
sensory-motor control, III: Learning a body-centered representation of 3-D target position J.
Cognit. Neurosci. 6, 341–358

58. Fiala, J.C., Grossberg, S. and Bullock, D. (1996) Metabotropic glutamate receptor activation in
cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink
response J. Neurosci. 16, 3760–3774

59. Ito, M. (1984) The Cerebellum and Neural Control, Raven Press
60. Edelman, G.M. (1987) Neural Darwinism: The theory of neuronal group selection, Basic

Books



3/15/00

21

61. Kohonen, T. (1984) Self-organization and associative memory, Springer-Verlag
62. Bullier, J., Hupé, J.M., James, A. and Girard, P (1996) Functional interactions between areas V1

and V2 in the monkey J. Physiology (Paris) 90, 217–220
63. Motter, B.C. (1994a) Neural correlates of attentive selective memory and pop-out in extrastriate

area V4 J. Neurosci. 14, 2178–2189
64. Motter, B.C. (1994b) Neural correlates of attentive selective memory and pop-out in extrastriate

area V4 J. Neurosci. 14, 2190–2199
65. Reynolds, J., Nicholas, J., Chelazzi, L. and Desimone, R. (1995) Spatial attention protects

macaque V2 and V4 cells from the influence of non-attended stimuli Soc. for Neurosi.
Abstracts 21.3, 1759

66. Sillito, A.M., Jones, H.E., Gerstein, G.L. and West, D.C. (1994) Feature-linked synchronization
of thalamic relay cell firing induced by feedback from the visual cortex Nature 369, 479–482

67. Grossberg, S. (1982) Studies of Mind and Brain, Kluwer
68. Grossberg, S. (1987) The Adaptive Brain, Vol. II., Elsevier/North-Holland
69. Grossberg, S., Boardman, I. and Cohen, M.A. (1997) Neural dynamics of variable-rate speech

categorization J. Exptal. Psychol.: Human Percept and Perform. 23, 481–503
70. Otto, T. and Eichenbaum, H. (1992) Neuronal activity in the hippocampus during delayed non-

match to sample performance in rats: Evidence for hippocampal processing in recognition
memory Hippocampus 2, 323–334

71.  Carpenter, G.A. and Grossberg, S. (1996) Adaptive resonance theory, in The Industrial
Electronics Handbook (Irwin, J.D. ed.) pp. 1286–1298, CRC Press

72. Mollon, J.D. and Sharpe, L.T. (1983) Colour Vision, Academic Press
73. Duffy, C.J. and Wurtz, R.H. (1995) Medial superior temporal area neurons respond to speed

patterns in optic flow J. Neurosci. 17, 2839–2851
74. Tanaka, K., Sugita, Y., Moriya, M. and Saito, H-A. (1993) Analysis of object motion in the

ventral part of the medial superior temporal area of the macaque visual cortex J. Neurophysiol.
69, 128–142

75. Born, R.T. and Tootell, R.B.H. (1992) Segregation of global and local motion processing in
primate middle temporal visual area Nature 357, 497–499

76. Grossberg, S., Mingolla, E. and Pack, C. (1999) A neural model of motion processing and
visual navigation by cortical area MST Cerebral Cortex 9, 878–895

77. Pack, C., Grossberg, S. and Mingolla, E. (1999) A neural model of smooth pursuit control and
motion perception by cortical area MST Boston U. Tech. Report 99–023

78. Graziano, M.S.A., Andersen, R.A. and Snowden, R. (1994) Tuning of MST neurons to spiral
motions J. Neurosci. 14, 54–67

79. Foley, J.M. (1980) Binocular distance perception Psychol. Rev. 87, 411–434
80. Grobstein, P. (1991) Directed movement in the frog: A closer look at a central representation of

spatial location, in Visual Structure and Integrated Functions (Arbib, M.A. and Ewert, J.-P.,
eds.) pp. 125–138, Springer-Verlag

81. Sakata, H., Shibutani, H. and Kawano, K. (1980) Spatial properties of visual fixation neurons in
posterior parietal association cortex of the monkey J. Neurophysiol. 43, 1654–1672

82. Heeger, D.J. (1993) Modeling simple-cell direction selectivity with normalized, half-squared
linear operators J. Neurophysiol. 70, 1885–1898

83. Douglas, R.J., Koch, C., Mahowald, M., Martin, K.A.C. and Suarez, H.H. (1995) Recurrent
excitation in neocortical circuits Science 269, 981–985

84. Gove, A., Grossberg, S. and Mingolla, E. (1995) Brightness, perception, illusory contours, and
corticogeniculate feedback Visual Neurosci. 12, 1027–1052

85. Grossberg, S., Mingolla, E. and Ross, W.D. (1997) Visual brain and visual perception: How
does the cortex do perceptual grouping? Trends in Neurosci. 20, 106–111

86. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. and Reitbock, H.J.
(1988) Coherent oscillations: A mechanism of feature linking in the visual cortex? Biol. Cyber.
60, 121–130

87. Gray, C.M. and Singer, W. (1989) Stimulus-specific neuronal oscillations in orientation
columns of cat visual cortex Proc. Natl. Acad. Sci. USA 86, 1698–1702



3/15/00

22

88. Grossberg, S. and Grunewald, A. (1997) Cortical synchronization and perceptual framing J.
Cognitive Neurosci. 9, 117–132

89. Georgopolous, A.P., Schwartz, A.B. and Kettner, R.E. (1986) Neuronal population coding of
movement direction Science 233, 11416–1419

90. Horak, F.B. and Anderson, M.E. (1984) Influence of globus pallidus on arm movements in
monkeys. I. Effects of kainic acid-induced lesions J. Neurophysiol. 52, 290–322

91. Bullock, D., Grossberg, S. and Mannes, C. (1993) A neural network model for cursive script
production Biol. Cybern. 70, 15–28

92. Pavlov, I.P. (1927) Conditioned Reflexes, Oxford University Press
93. Skinner, B.G. (1938) The Behavior of Organisms, Appleton Century Crofts
94. Kamin, L.J. (1969) Predictability, surprise, attention, and conditioning, in Punishment and

Aversive Behavior (Campbell, B.A. and Church, R.M., eds.) pp. 279–298, Appleton Century
Crofts

95. Staddon, J.E.R. (1983) Adaptive Behavior and Learning, Cambridge University Press
96. Aggleton, J.P. (1993) The contribution of the amygdala to normal and abnormal emotional

states Trends in Neurosciences 16, 328–333
97. Davis, M. (1994) The role of the amygdala in emotional learning Internat. Rev. of Neurobiol .

36, 225–265
98. LeDoux, J.E. (1993) Emotional memory systems in the brain Behav. Brain Res. 58, 69–79
99. Thompson, R.F. (1988) The neural basis of basic associative learning of discrete behavioral

responses Trends in Neurosciences 11, 152–155
100. Baddeley, A.D. (1986) Working Memory, Clarendon Press
101. Bradski, G., Carpenter, G.A. and Grossberg, S. (1994) STORE working memory networks for

storage and recall of arbitrary sequences Biol. Cyber. 71, 469–480
102. Boardman, I., Grossberg, S., Myers, C. and Cohen, M.A. (1999) Neural dynamics of

perceptual order and context effects for variable-rate speech syllables Percept. and Psychophys.
61, 1477–1500

103. Grossberg, S. and Myers, C. (1999) The resonant dynamics of speech perception: Interword
integration and duration-dependent backwards effects Psychol. Rev., in press.

104. Obermayer, K., Ritter, H. and Schulten, K. (1990) A principle for the formation of the spatial
structure of retinotopic maps, orientation and ocular dominance columns Proc. Natl. Acad. Sci.
USA 87, 8345–8349.


