Raul Rojas

Neural Networks

A Systematic Introduction

Springer
Berlin Heidelberg New York

Hong Kong London
Milan Paris Tokyo

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

Foreword

One of the well-springs of mathematical inspiration has been the continu-
ing attempt to formalize human thought. From the syllogisms of the Greeks,
through all of logic and probability theory, cognitive models have led to beau-
tiful mathematics and wide ranging application. But mental processes have
proven to be more complex than any of the formal theories and the various
idealizations have broken off to become separate fields of study and applica-
tion.

It now appears that the same thing is happening with the recent devel-
opments in connectionist and neural computation. Starting in the 1940s and
with great acceleration since the 1980s, there has been an effort to model
cognition using formalisms based on increasingly sophisticated models of the
physiology of neurons. Some branches of this work continue to focus on biolog-
ical and psychological theory, but as in the past, the formalisms are taking on
a mathematical and application life of their own. Several varieties of adaptive
networks have proven to be practical in large difficult applied problems and
this has led to interest in their mathematical and computational properties.

We are now beginning to see good textbooks for introducing the subject
to various student groups. This book by Raul Rojas is aimed at advanced
undergraduates in computer science and mathematics. This is a revised version
of his German text which has been quite successful. It is also a valuable self-
instruction source for professionals interested in the relation of neural network
ideas to theoretical computer science and articulating disciplines.

The book is divided into eighteen chapters, each designed to be taught in
about one week. The first eight chapters follow a progression and the later
ones can be covered in a variety of orders. The emphasis throughout is on
explicating the computational nature of the structures and processes and re-
lating them to other computational formalisms. Proofs are rigorous, but not
overly formal, and there is extensive use of geometric intuition and diagrams.
Specific applications are discussed, with the emphasis on computational rather
than engineering issues. There is a modest number of exercises at the end of
most chapters.

VIII Foreword

The most widely applied mechanisms involve adapting weights in feed-
forward networks of uniform differentiable units and these are covered thor-
oughly. In addition to chapters on the background, fundamentals, and varia-
tions on backpropagation techniques, there is treatment of related questions
from statistics and computational complexity.

There are also several chapters covering recurrent networks including the
general associative net and the models of Hopfield and Kohonen. Stochas-
tic variants are presented and linked to statistical physics and Boltzmann
learning. Other chapters (weeks) are dedicated to fuzzy logic, modular neural
networks, genetic algorithms, and an overview of computer hardware devel-
oped for neural computation. Each of the later chapters is self-contained and
should be readable by a student who has mastered the first half of the book.

The most remarkable aspect of neural computation at the present is the
speed at which it is maturing and becoming integrated with traditional disci-
plines. This book is both an indication of this trend and a vehicle for bringing
it to a generation of mathematically inclined students.

Berkeley, California Jerome Feldman

Preface

This book arose from my lectures on neural networks at the Free University
of Berlin and later at the University of Halle. I started writing a new text
out of dissatisfaction with the literature available at the time. Most books
on neural networks seemed to be chaotic collections of models and there was
no clear unifying theoretical thread connecting them. The results of my ef-
forts were published in German by Springer-Verlag under the title Theorie
der neuronalen Netze. 1 tried in that book to put the accent on a system-
atic development of neural network theory and to stimulate the intuition of
the reader by making use of many figures. Intuitive understanding fosters a
more immediate grasp of the objects one studies, which stresses the concrete
meaning of their relations. Since then some new books have appeared, which
are more systematic and comprehensive than those previously available, but
I think that there is still much room for improvement. The German edition
has been quite successful and at the time of this writing it has gone through
five printings in the space of three years.

However, this book is not a translation. I rewrote the text, added new
sections, and deleted some others. The chapter on fast learning algorithms is
completely new and some others have been adapted to deal with interesting
additional topics. The book has been written for undergraduates, and the only
mathematical tools needed are those which are learned during the first two
years at university. The book offers enough material for a semester, although
I do not normally go through all chapters. It is possible to omit some of them
so as to spend more time on others. Some chapters from this book have been
used successfully for university courses in Germany, Austria, and the United
States.

The various branches of neural networks theory are all interrelated closely
and quite often unexpectedly. Even so, because of the great diversity of the
material treated, it was necessary to make each chapter more or less self-
contained. There are a few minor repetitions but this renders each chapter
understandable and interesting. There is considerable flexibility in the order
of presentation for a course. Chapter 1 discusses the biological motivation

X Preface

of the whole enterprise. Chapters 2, 3, and 4 deal with the basics of thresh-
old logic and should be considered as a unit. Chapter 5 introduces vector
quantization and unsupervised learning. Chapter 6 gives a nice geometrical
interpretation of perceptron learning. Those interested in stressing current
applications of neural networks can skip Chapters 5 and 6 and go directly
to the backpropagation algorithm (Chapter 7). I am especially proud of this
chapter because it introduces backpropagation with minimal effort, using a
graphical approach, yet the result is more general than the usual derivations
of the algorithm in other books. I was rather surprised to see that Neural
Computation published in 1996 a paper about what is essentially the method
contained in my German book of 1993.

Those interested in statistics and complexity theory should review Chap-
ters 9 and 10. Chapter 11 is an intermezzo and clarifies the relation between
fuzzy logic and neural networks. Recurrent networks are handled in the three
chapters, dealing respectively with associative memories, the Hopfield model,
and Boltzmann machines. They should be also considered a unit. The book
closes with a review of self-organization and evolutionary methods, followed
by a short survey of currently available hardware for neural networks.

We are still struggling with neural network theory, trying to find a more
systematic and comprehensive approach. Every chapter should convey to the
reader an understanding of one small additional piece of the larger picture. I
sometimes compare the current state of the theory with a big puzzle which we
are all trying to put together. This explains the small puzzle pieces that the
reader will find at the end of each chapter. Enough discussion — Let us start
our journey into the fascinating world of artificial neural networks without
further delay.

Errata and electronic information

This book has an Internet home page. Any errors reported by readers, new
ideas, and suggested exercises can be downloaded from Berlin, Germany. The
WWW link is: http://www.inf.fu-berlin.de/~rojas/neural. The home page
offers also some additional useful information about neural networks. You can
send your comments by e-mail to rojas@inf.fu-berlin.de.

Acknowledgements

Many friends and colleagues have contributed to the quality of this book.
The names of some of them are listed in the preface to the German edition of
1993. Phil Maher, Rosi Weinert-Knapp, and Gaye Rochow revised my original
manuscript. Andrew J. Ross, English editor at Springer-Verlag in Heidelberg,
took great care in degermanizing my linguistic constructions.

The book was written at three different institutions: The Free University
of Berlin provided an ideal working environment during the first phase of writ-
ing. Vilim Vesligaj configured TeX so that it would accept Springer’s style.

Preface XI

Giinter Feuer, Marcus Pfister, Willi Wolf, and Birgit Miiller were patient dis-
cussion partners. I had many discussions with Frank Darius on damned lies
and statistics. The work was finished at Halle’s Martin Luther University. My
collaborator Bernhard Frotschl and some of my students found many of my
early TeX-typos. I profited from two visits to the International Computer Sci-
ence Institute in Berkeley during the summers of 1994 and 1995. I especially
thank Jerry Feldman, Joachim Beer, and Nelson Morgan for their encour-
agement. Lokendra Shastri tested the backpropagation chapter “in the field”,
that is in his course on connectionist models at UC Berkeley. It was very re-
warding to spend the evenings talking to Andres and Celina Albanese about
other kinds of networks (namely real computer networks). Lotfi Zadeh was
very kind in inviting me to present my visualization methods at his Semi-
nar on Soft Computing. Due to the efforts of Dieter Ernst there is no good
restaurant in the Bay Area where I have not been.

It has been a pleasure working with Springer-Verlag and the head of the
planning section, Dr. Hans Wossner, in the development of this text. With
him cheering from Heidelberg I could survive the whole ordeal of TeXing more
than 500 pages.

Finally, I thank my daughter Tania and my wife Margarita Esponda for
their love and support during the writing of this book. Since my German
book was dedicated to Margarita, the new English edition is now dedicated
to Tania. I really hope she will read this book in the future (and I hope she
will like it).

Berlin and Halle Ratl Rojas Gonzélez
March 1996

>

“For Reason, in this sense, is nothing but
Reckoning (that is, Adding and Subtracting).”

Thomas Hobbes, Leviathan.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

1

The Biological Paradigm

1.1 Neural computation

Research in the field of neural networks has been attracting increasing atten-
tion in recent years. Since 1943, when Warren McCulloch and Walter Pitts
presented the first model of artificial neurons, new and more sophisticated
proposals have been made from decade to decade. Mathematical analysis has
solved some of the mysteries posed by the new models but has left many ques-
tions open for future investigations. Needless to say, the study of neurons, their
interconnections, and their role as the brain’s elementary building blocks is
one of the most dynamic and important research fields in modern biology. We
can illustrate the relevance of this endeavor by pointing out that between 1901
and 1991 approximately ten percent of the Nobel Prizes for Physiology and
Medicine were awarded to scientists who contributed to the understanding of
the brain. It is not an exaggeration to say that we have learned more about
the nervous system in the last fifty years than ever before.

In this book we deal with artificial neural networks, and therefore the first
question to be clarified is their relation to the biological paradigm. What do we
abstract from real neurons for our models? What is the link between neurons
and artificial computing units? This chapter gives a preliminary answer to
these important questions.

1.1.1 Natural and artificial neural networks

Artificial neural networks are an attempt at modeling the information pro-
cessing capabilities of nervous systems. Thus, first of all, we need to consider
the essential properties of biological neural networks from the viewpoint of in-
formation processing. This will allow us to design abstract models of artificial
neural networks, which can then be simulated and analyzed.

Although the models which have been proposed to explain the structure
of the brain and the nervous systems of some animals are different in many

4 1 The Biological Paradigm

respects, there is a general consensus that the essence of the operation of
neural ensembles is “control through communication” [72]. Animal nervous
systems are composed of thousands or millions of interconnected cells. Each
one of them is a very complex arrangement which deals with incoming signals
in many different ways. However, neurons are rather slow when compared to
electronic logic gates. These can achieve switching times of a few nanoseconds,
whereas neurons need several milliseconds to react to a stimulus. Nevertheless
the brain is capable of solving problems which no digital computer can yet
efficiently deal with.

Massive and hierarchical networking of the brain seems to be the funda-
mental precondition for the emergence of consciousness and complex behav-
ior [202]. So far, however, biologists and neurologists have concentrated their
research on uncovering the properties of individual neurons. Today, the mech-
anisms for the production and transport of signals from one neuron to the
other are well-understood physiological phenomena, but how these individual
systems cooperate to form complex and massively parallel systems capable
of incredible information processing feats has not yet been completely elu-
cidated. Mathematics, physics, and computer science can provide invaluable
help in the study of these complex systems. It is not surprising that the study
of the brain has become one of the most interdisciplinary areas of scientific
research in recent years.

However, we should be careful with the metaphors and paradigms com-
monly introduced when dealing with the nervous system. It seems to be a
constant in the history of science that the brain has always been compared
to the most complicated contemporary artifact produced by human industry
[297]. In ancient times the brain was compared to a pneumatic machine, in
the Renaissance to a clockwork, and at the end of the last century to the tele-
phone network. There are some today who consider computers the paradigm
par excellence of a nervous system. It is rather paradoxical that when John
von Neumann wrote his classical description of future universal computers, he
tried to choose terms that would describe computers in terms of brains, not
brains in terms of computers.

The nervous system of an animal is an information processing totality. The
sensory inputs, i.e., signals from the environment, are coded and processed
to evoke the appropriate response. Biological neural networks are just one
of many possible solutions to the problem of processing information. The
main difference between neural networks and conventional computer systems
is the massive parallelism and redundancy which they exploit in order to deal
with the unreliability of the individual computing units. Moreover, biological
neural networks are self-organizing systems and each individual neuron is also
a delicate self-organizing structure capable of processing information in many
different ways.

In this book we study the information processing capabilities of complex
hierarchical networks of simple computing units. We deal with systems whose
structure is only partially predetermined. Some parameters modify the ca-

1.1 Neural computation 5

pabilities of the network and it is our task to find the best combination for
the solution of a given problem. The adjustment of the parameters will be
done through a learning algorithm, i.e., not through explicit programming
but through an automatic adaptive method.

A cursory review of the relevant literature on artificial neural networks
leaves the impression of a chaotic mixture of very different network topologies
and learning algorithms. Commercial neural network simulators sometimes
offer several dozens of possible models. The large number of proposals has
led to a situation in which each single model appears as part of a big puzzle
whereas the bigger picture is absent. Consequently, in the following chapters
we try to solve this puzzle by systematically introducing and discussing each
of the neural network models in relation to the others.

Our approach consists of stating and answering the following questions:
what information processing capabilities emerge in hierarchical systems of
primitive computing units? What can be computed with these networks? How
can these networks determine their structure in a self-organizing manner?

We start by considering biological systems. Artificial neural networks have
aroused so much interest in recent years, not only because they exhibit inter-
esting properties, but also because they try to mirror the kind of information
processing capabilities of nervous systems. Since information processing con-
sists of transforming signals, we deal with the biological mechanisms for their
generation and transmission in this chapter. We discuss those biological pro-
cesses by which neurons produce signals, and absorb and modify them in order
to retransmit the result. In this way biological neural networks give us a clue
regarding the properties which would be interesting to include in our artificial
networks.

1.1.2 Models of computation

Artificial neural networks can be considered as just another approach to the
problem of computation. The first formal definitions of computability were
proposed in the 1930s and ’40s and at least five different alternatives were
studied at the time. The computer era was started, not with one single ap-
proach, but with a contest of alternative computing models. We all know that
the von Neumann computer emerged as the undisputed winner in this con-
frontation, but its triumph did not lead to the dismissal of the other computing
models. Figure 1.1 shows the five principal contenders:

The mathematical model

Mathematicians avoided dealing with the problem of a function’s computabil-
ity until the beginning of this century. This happened not just because exis-
tence theorems were considered sufficient to deal with functions, but mainly
because nobody had come up with a satisfactory definition of computability,
certainly a relative concept which depends on the specific tools that can be

6 1 The Biological Paradigm

used. The general solution for algebraic equations of degree five, for example,
cannot be formulated using only algebraic functions, yet this can be done if
a more general class of functions is allowed as computational primitives. The
squaring of the circle, to give another example, is impossible using ruler and
compass, but it has a trivial real solution.

If we want to talk about computability we must therefore specify which
tools are available. We can start with the idea that some primitive functions
and composition rules are “obviously” computable. All other functions which
can be expressed in terms of these primitives and composition rules are then
also computable.

David Hilbert, the famous German mathematician, was the first to state
the conjecture that a certain class of functions contains all intuitively com-
putable functions. Hilbert was referring to the primitive recursive functions,
the class of functions which can be constructed from the zero and successor
function using composition, projection, and a deterministic number of itera-
tions (primitive recursion). However, in 1928, Wilhelm Ackermann was able
to find a computable function which is not primitive recursive. This led to
the definition of the general recursive functions [154]. In this formalism, a
new composition rule has to be introduced, the so-called i operator, which is
equivalent to an indeterminate recursion or a lookup in an infinite table. At
the same time Alonzo Church and collaborators developed the lambda calcu-
lus, another alternative to the mathematical definition of the computability
concept [380]. In 1936, Church and Kleene were able to show that the general
recursive functions can be expressed in the formalism of the lambda calculus.
This led to the Church thesis that computable functions are the general recur-
sive functions. David Deutsch has recently added that this thesis should be
considered to be a statement about the physical world and be given the same
status as a physical principle. He thus speaks of a “Church principle” [109].

The logic-operational model (Turing machines)

In his classical paper “On Computable Numbers with an Application to the
Entscheidungsproblem” Alan Turing introduced another kind of computing
model. The advantage of his approach is that it consists in an operational,
mechanical model of computability. A Turing machine is composed of an infi-
nite tape, in which symbols can be stored and read again. A read-write head
can move to the left or to the right according to its internal state, which
is updated at each step. The Turing thesis states that computable functions
are those which can be computed with this kind of device. It was formulated
concurrently with the Church thesis and Turing was able to show almost im-
mediately that they are equivalent [435]. The Turing approach made clear for
the first time what “programming” means, curiously enough at a time when
no computer had yet been built.

1.1 Neural computation 7

Hilbert (1926)
Turing (1936) Ackermann (1928)
Kleene, Church (1936)

Computa-
bility

Z1 to ENIAC John von

Neumann

von Neumann
architecture

o Omputer

L)JP
llIOlnF? 19[1’1[[90

McCulloch/Pitts (1943)
N. Wiener (1948)

A

Information theory
Shannon (1940-49)

neural networks

Fig. 1.1. Five models of computation

The computer model

The first electronic computing devices were developed in the 1930s and ’40s.
Since then, “computation-with-the-computer” has been regarded as com-
putability itself. However the first engineers developing computers were for
the most part unaware of Turing’s or Church’s research. Konrad Zuse, for ex-
ample, developed in Berlin between 1938 and 1944 the computing machines 71
and Z3 which were programmable but not universal, because they could not
reach the whole space of the computable functions. Zuse’s machines were able
to process a sequence of instructions but could not iterate. Other computers of
the time, like the Mark I built at Harvard, could iterate a constant number of
times but were incapable of executing open-ended iterations (WHILE loops).
Therefore the Mark I could compute the primitive but not the general recur-
sive functions. Also the ENIAC, which is usually hailed as the world’s first
electronic computer, was incapable of dealing with open-ended loops, since
iterations were determined by specific connections between modules of the
machine. It seems that the first universal computer was the Mark I built in
Manchester [96, 375]. This machine was able to cover all computable functions
by making use of conditional branching and self-modifying programs, which
is one possible way of implementing indexed addressing [268].

8 1 The Biological Paradigm
Cellular automata

The history of the development of the first mechanical and electronic comput-
ing devices shows how difficult it was to reach a consensus on the architecture
of universal computers. Aspects such as the economy or the dependability of
the building blocks played a role in the discussion, but the main problem was
the definition of the minimal architecture needed for universality. In machines
like the Mark I and the ENTAC there was no clear separation between memory
and processor, and both functional elements were intertwined. Some machines
still worked with base 10 and not 2, some were sequential and others parallel.

John von Neumann, who played a major role in defining the architecture of
sequential machines, analyzed at that time a new computational model which
he called cellular automata. Such automata operate in a “computing space” in
which all data can be processed simultaneously. The main problem for cellular
automata is communication and coordination between all the computing cells.
This can be guaranteed through certain algorithms and conventions. It is not
difficult to show that all computable functions, in the sense of Turing, can
also be computed with cellular automata, even of the one-dimensional type,
possessing only a few states. Turing himself considered this kind of computing
model at one point in his career [192].

Cellular automata as computing model resemble massively parallel multi-
processor systems of the kind that has attracted considerable interest recently.

The biological model (neural networks)

The explanation of important aspects of the physiology of neurons set the
stage for the formulation of artificial neural network models which do not op-
erate sequentially, as Turing machines do. Neural networks have a hierarchical
multilayered structure which sets them apart from cellular automata, so that
information is transmitted not only to the immediate neighbors but also to
more distant units. In artificial neural networks one can connect each unit
to any other. In contrast to conventional computers, no program is handed
over to the hardware — such a program has to be created, that is, the free
parameters of the network have to be found adaptively.

Although neural networks and cellular automata are potentially more effi-
cient than conventional computers in certain application areas, at the time of
their conception they were not yet ready to take center stage. The necessary
theory for harnessing the dynamics of complex parallel systems is still be-
ing developed right before our eyes. In the meantime, conventional computer
technology has made great strides.

There is no better illustration for the simultaneous and related emergence
of these various computability models than the life and work of John von
Neumann himself. He participated in the definition and development of at
least three of these models: in the architecture of sequential computers [417],

1.2 Networks of neurons 9

the theory of cellular automata and the first neural network models. He also
collaborated with Church and Turing in Princeton [192].

Artificial neural networks have, as initial motivation, the structure of bi-
ological systems, and constitute an alternative computability paradigm. For
that reason we will review some aspects of the way in which biological sys-
tems perform information processing. The fascination which still pervades
this research field has much to do with the points of contact with the sur-
prisingly elegant methods used by neurons in order to process information at
the cellular level. Several million years of evolution have led to very sophis-
ticated solutions to the problem of dealing with an uncertain environment.
In this chapter we will discuss some elements of these strategies in order to
determine what features we want to adopt in our abstract models of neural
networks.

1.1.3 Elements of a computing model

What are the elementary components of any conceivable computing model?
In the theory of general recursive functions, for example, it is possible to
reduce any computable function to some composition rules and a small set of
primitive functions. For a universal computer, we ask about the existence of a
minimal and sufficient instruction set. For an arbitrary computing model the
following metaphoric expression has been proposed:

computation = storage + transmission + processing.

The mechanical computation of a function presupposes that these three
elements are present, that is, that data can be stored, communicated to the
functional units of the model and transformed. It is implicitly assumed that a
certain coding of the data has been agreed upon. Coding plays an important
role in information processing because, as Claude Shannon showed in 1948,
when noise is present information can still be transmitted without loss, if the
right code with the right amount of redundancy is chosen.

Modern computers transform storage of information into a form of infor-
mation transmission. Static memory chips store a bit as a circulating current
until the bit is read. Turing machines store information in an infinite tape,
whereas transmission is performed by the read-write head. Cellular automata
store information in each cell, which at the same time is a small processor.

1.2 Networks of neurons

In biological neural networks information is stored at the contact points be-
tween different neurons, the so-called synapses. Later we will discuss what role
these elements play for the storage, transmission, and processing of informa-
tion. Other forms of storage are also known, because neurons are themselves

10 1 The Biological Paradigm

complex systems of self-organizing signaling. In the next few pages we can-
not do justice to all this complexity, but we analyze the most salient features
and, with the metaphoric expression given above in mind, we will ask: how
do neurons compute?

1.2.1 Structure of the neurons

Nervous systems possess global architectures of variable complexity, but all
are composed of similar building blocks, the neural cells or neurons. They can
perform different functions, which in turn leads to a very variable morphology.
If we analyze the human cortex under a microscope, we can find several dif-
ferent types of neurons. Figure 1.2 shows a diagram of a portion of the cortex.
Although the neurons have very different forms, it is possible to recognize a
hierarchical structure of six different layers. Each one has specific functional
characteristics. Sensory signals, for example, are transmitted directly to the
fourth layer and from there processing is taken over by other layers.

Fig. 1.2. A view of the human cortex [from Lassen et al. 1988]

Neurons receive signals and produce a response. The general structure
of a generic neuron is shown in Figure 1.3'. The branches to the left are the
transmission channels for incoming information and are called dendrites. Den-
drites receive the signals at the contact regions with other cells, the synapses

! Some animals have neurons with a very different morphology. In insects, for ex-
ample, the dendrites go directly into the axon and the cell body is located far from
them. The way these neurons work is nevertheless very similar to the description
in this chapter.

1.2 Networks of neurons 11

mentioned already. Organelles in the body of the cell produce all necessary
chemicals for the continuous working of the neuron. The mitochondria, visible
in Figure 1.3, can be thought of as part of the energy supply of the cell, since
they produce chemicals which are consumed by other cell structures. The out-
put signals are transmitted by the azon, of which each cell has at most one.
Some cells do not have an axon, because their task is only to set some cells
in contact with others (in the retina, for example).

Fig. 1.3. A typical motor neuron [from Stevens 1988]

These four elements, dendrites, synapses, cell body, and axon, are the
minimal structure we will adopt from the biological model. Artificial neurons
for computing will have input channels, a cell body and an output channel.
Synapses will be simulated by contact points between the cell body and input
or output connections; a weight will be associated with these points.

1.2.2 Transmission of information

The fundamental problem of any information processing system is the trans-
mission of information, as data storage can be transformed into a recurrent
transmission of information between two points [177].

Biologists have known for more than 100 years that neurons transmit infor-
mation using electrical signals. Because we are dealing with biological struc-
tures, this cannot be done by simple electronic transport as in metallic cables.
Evolution arrived at another solution involving ions and semipermeable mem-
branes.

Our body consists mainly of water, 55% of which is contained within the
cells and 45% forming its environment. The cells preserve their identity and
biological components by enclosing the protoplasm in a membrane made of

12 1 The Biological Paradigm

a double layer of molecules that form a diffusion barrier. Some salts, present
in our body, dissolve in the intracellular and extracellular fluid and dissociate
into negative and positive ions. Sodium chloride, for example, dissociates into
positive sodium ions (Na™) and negative chlorine ions (C1™). Other positive
ions present in the interior or exterior of the cells are potassium (K*) and
calcium (Ca?*). The membranes of the cells exhibit different degrees of per-
meability for each one of these ions. The permeability is determined by the
number and size of pores in the membrane, the so-called ionic channels. These
are macromolecules with forms and charges which allow only certain ions to
go from one side of the cell membrane to the other. Channels are selectively
permeable to sodium, potassium or calcium ions. The specific permeability
of the membrane leads to different distributions of ions in the interior and
the exterior of the cells and this, in turn, to the interior of neurons being
negatively charged with respect to the extracellular fluid.

membrane
| positive
H ° o— | ions \H ® o
H . ’
_| .)
o & negative o e o
ions
O 0 ® o (€]
o® o ®
@] ® o)
[oo e |
~%— (iffusion force electrostatic < diffusion force

force

Fig. 1.4. Diffusion of ions through a membrane

Figure 1.4 illustrates this phenomenon. A box is divided into two parts
separated by a membrane permeable only to positive ions. Initially the same
number of positive and negative ions is located in the right side of the box.
Later, some positive ions move from the right to the left through the pores in
the membrane. This occurs because atoms and molecules have a thermody-
namical tendency to distribute homogeneously in space by the process called
diffusion. The process continues until the electrostatic repulsion from the pos-
itive ions on the left side balances the diffusion potential. A potential differ-
ence, called the reversal potential, is established and the system behaves like
a small electric battery. In a cell, if the initial concentration of potassium ions
in its interior is greater than in its exterior, positive potassium ions will dif-
fuse through the open potassium-selective channels. If these are the only ionic
channels, negative ions cannot disperse through the membrane. The interior
of the cell becomes negatively charged with respect to the exterior, creating
a potential difference between both sides of the membrane. This balances the

1.2 Networks of neurons 13

diffusion potential, and, at some point, the net flow of potassium ions through
the membrane falls to zero. The system reaches a steady state. The potential
difference F for one kind of ion is given by the Nernst formula

E = k(In(c,) — In(¢;))

where ¢; is the concentration inside the cell, ¢, the concentration in the ex-
tracellular fluid and % is a proportionality constant [295]. For potassium ions
the equilibrium potential is —80 mV.

Because there are several different concentrations of ions inside and out-
side of the cell, the question is, what is the potential difference which is fi-
nally reached. The exact potential in the interior of the cell depends on the
mixture of concentrations. A typical cell’s potential is —70 mV, which is pro-
duced mainly by the ion concentrations shown in Figure 1.5 (A~ designates
negatively charged biomolecules). The two main ions in the cell are sodium
and potassium. Equilibrium potential for sodium lies around 58 mV. The cell
reaches a potential between —80 mV and 58 mV. The cell’s equilibrium poten-
tial is nearer to the value induced by potassium, because the permeability of
the membrane to potassium is greater than to sodium. There is a net outflow
of potassium ions at this potential and a net inflow of sodium ions. However,
the sodium ions are less mobile because fewer open channels are available. In
the steady state the cell membrane experiences two currents of ions trying to
reach their individual equilibrium potential. An ion pump guarantees that the
concentration of ions does not change with time.

intracellular fluid extracellular fluid
(concentration in mM) (concentration in mM)

K+ 5
Nat 120
ClI™ 125
A~ 0

Fig. 1.5. Ion concentrations inside and outside a cell

The British scientists Alan Hodgkin and Andrew Huxley were able to show
that it is possible to build an electric model of the cell membrane based on
very simple assumptions. The membrane behaves as a capacitor made of two
isolated layers of lipids. It can be charged with positive or negative ions. The
different concentrations of several classes of ions in the interior and exterior of
the cell provide an energy source capable of negatively polarizing the interior
of the cell. Figure 1.6 shows a diagram of the model proposed by Hodgkin and

14 1 The Biological Paradigm

Huxley. The specific permeability of the membrane for each class of ion can
be modeled like a conductance (the reciprocal of resistance).

environment

11

L [1

cell's interior

capacity of the |,
cell membrane ——
C - Vaa
m

\\\\H?ww
M\wa

Fig. 1.6. The Hodgkin—Huxley model of a cell membrane

The electric model is a simplification, because there are other classes of
ions and electrically charged proteins present in the cell. In the model, three
ions compete to create a potential difference between the interior and exterior
of the cell. The conductances gna, gk, and g, reflect the permeability of
the membrane to sodium, potassium, and leakages, i.e., the number of open
channels of each class. A signal can be produced by modifying the polarity
of the cell through changes in the conductances gn, and gkx. By making gy,
larger and the mobility of sodium ions greater than the mobility of potassium
ions, the polarity of the cell changes from —70 mV to a positive value, nearer
to the 58 mV at which sodium ions reach equilibrium. If the conductance gk
then becomes larger and gn, falls back to its original value, the interior of the
cell becomes negative again, overshooting in fact by going below —70 mV. To
generate a signal, a mechanism for depolarizing and polarizing the cell in a
controlled way is necessary.

The conductance and resistance of a cell membrane in relation to the
different classes of ions depends on its permeability. This can be controlled
by opening or closing excitable ionic channels. In addition to the static ionic
channels already mentioned, there is another class which can be electrically
controlled. These channels react to a depolarization of the cell membrane.
When this happens, that is, when the potential of the interior of the cell
in relation to the exterior reaches a threshold, the sodium-selective channels
open automatically and positive sodium ions flow into the cell making its
interior positive. This in turn leads to the opening of the potassium-selective
channels and positive potassium ions flow to the exterior of the cell, restoring
the original negative polarization.

Figure 1.7 shows a diagram of an electrically controlled sodium-selective
channel which lets only sodium ions flow across. This effect is produced by the

1.2 Networks of neurons 15

small aperture in the middle of the channel which is negatively charged (at
time ¢ = 1). If the interior of the cell becomes positive relative to the exterior,
some negative charges are displaced in the channel and this produces the
opening of a gate (¢ = 2). Sodium ions flow through the channel and into the
cell. After a short time the second gate is closed and the ionic channel is sealed
(t = 3). The opening of the channel corresponds to a change of membrane
conductivity as explained above.

environment
— + — _ 4
t=1 .Na t=2 .Néf t=3 z\,a
e —7)
) o
S
55ad0 ol®o 0y®o
cell e
membrane
o |® @e
o © e
o
e
)
[® ®
closed channel open channel closed channel

interior of the cell

Fig. 1.7. Electrically controlled ionic channels

Static and electrically controlled ionic channels are not only found in neu-
rons. As in any electrical system there are charge losses which have to be
continuously balanced. A sodium ion pump (Figure 1.8) transports the excess
of sodium ions out of the cell and, at the same time, potassium ions into its
interior. The ion pump consumes adenosine triphosphate (ATP), a substance
produced by the mitochondria, helping to stabilize the polarization potential
of =70 mV. The ion pump is an example of a self-regulating system, because it
is accelerated or decelerated by the differences in ion concentrations on both
sides of the membrane. Ion pumps are constantly active and account for a
considerable part of the energy requirements of the nervous system.

Neural signals are produced and transmitted at the cell membrane. The
signals are represented by depolarization waves traveling through the axons in
a self-regenerating manner. Figure 1.9 shows the form of such a depolarization
wave, called an action potential. The x-dimension is shown horizontally and
the diagram shows the instantaneous potential in each segment of the axon.

An action potential is produced by an initial depolarization of the cell
membrane. The potential increases from —70 mV up to +40 mV. After some
time the membrane potential becomes negative again but it overshoots, going

16 1 The Biological Paradigm

sodium ions

o) (]
) @ ° o ® o
O
()
@]
membrane
O
° @
: e o) o
/e © o

potassium ions
Fig. 1.8. Sodium and potassium ion pump
as low as —80 mV. The cell recovers gradually and the cell membrane returns
to the initial potential. The switching time of the neurons is determined, as

in any resistor-capacitor configuration, by the RC constant. In neurons, 2.4
milliseconds is a typical value for this constant.

+ 40

+207] A
mv 0-| X
- 204
resting
- 40+ potential
- 60
- 80

2 milliseconds

Fig. 1.9. Typical form of the action potential

Figure 1.10 shows an action potential traveling through an axon. A local
perturbation, produced by the signals arriving at the dendrites, leads to the
opening of the sodium-selective channels in a certain region of the cell mem-
brane. The membrane is thus depolarized and positive sodium ions flow into
the cell. After a short delay, the outward flow of potassium ions compensates
the depolarization of the membrane. Both perturbations — the opening of the
sodium and potassium-selective channels — are transmitted through the axon
like falling dominos. In the entire process only local energy is consumed, that
is, only the energy stored in the polarized membrane itself. The action po-
tential is thus a wave of Na™ permeability increase followed by a wave of K+
permeability increase. It is easy to see that charged particles only move a short

1.2 Networks of neurons 17

distance in the direction of the perturbation, only as much as is necessary to
perturb the next channels and bring the next “domino” to fall.

Figure 1.10 also shows how impulse trains are produced in the cells. Af-
ter a signal is produced a new one follows. Each neural signal is an all-or-
nothing self-propagating regenerative event as each signal has the same form
and amplitude. At this level we can safely speak about digital transmission of
information.

+40- —_—

mV 07
-407

- 80 resting potential
B Na*
\ ‘
T [T
-------- B
axon - K+ v
———————— R o T
— 1T LT
v Nat axon membrane
+40: /\—>
0 X
mV —
-407 \
- 807
1 Nat
A ‘
T T
--------------------- F-+++ty -----------"--"-"------
- K+ v
————————————————————— e T
[LT [T
= \
' Nat

- 80
- + +

\ Na \ Na

-------- F-Ft+ -------------- - F- b oo

_ + +

——————— K L-+++4 ——————————————————K—-—+++-A ccooos
[T [T [T [T

= I I
' Nat ' Na*t

Fig. 1.10. Transmission of an action potential [Stevens 1988]

With this picture of the way an action potential is generated in mind, it is
easy to understand the celebrated Hodgkin—Huxley differential equation which

18 1 The Biological Paradigm

describes the instantaneous variation of the cell’s potential V' as a function of
the conductances of sodium, potassium and leakages (gna, gk, gr.) and of the
equilibrium potentials for all three groups of ions called Vx,, Vk and Vi, with
respect to the current potential:

av 1

E = C_m(I*gNa(V*VNa)*gK(V*VK)*gL(V*VL»- (1.1)
In this equation C, is the capacitance of the cell membrane. The terms
V — Wa, V — Vi, V — 11, are the electromotive forces acting on the ions.
Any variation of the conductances translates into a corresponding variation
of the cell’s potential V. The variations of gn, and gk are given by differential
equations which describe their oscillations. The conductance of the leakages,
g1, can be taken as a constant.

A neuron codes its level of activity by adjusting the frequency of the gen-
erated impulses. This frequency is greater for a greater stimulus. In some cells
the mapping from stimulus to frequency is linear in a certain interval [72].
This means that information is transmitted from cell to cell using what engi-
neers call frequency modulation. This form of transmission helps to increase
the accuracy of the signal and to minimize the energy consumption of the
cells.

1.2.3 Information processing at the neurons and synapses

Neurons transmit information using action potentials. The processing of this
information involves a combination of electrical and chemical processes, reg-
ulated for the most part at the interface between neurons, the synapses.

Neurons transmit information not only by electrical perturbations. Al-
though electrical synapses are also known, most synapses make use of chemical
signaling. Figure 1.11 is a classical diagram of a typical synapse. The synapse
appears as a thickening of the axon. The small vacuoles in the interior, the
synaptic vesicles, contain chemical transmitters. The small gap between a
synapse and the cell to which it is attached is known as the synaptic gap.

When an electric impulse arrives at a synapse, the synaptic vesicles fuse
with the cell membrane (Figure 1.12). The transmitters flow into the synaptic
gap and some attach themselves to the ionic channels, as in our example. If the
transmitter is of the right kind, the ionic channels are opened and more ions
can now flow from the exterior to the interior of the cell. The cell’s potential
is altered in this way. If the potential in the interior of the cell is increased,
this helps prepare an action potential and the synapse causes an excitation
of the cell. If negative ions are transported into the cell, the probability of
starting an action potential is decreased for some time and we are dealing
with an inhibitory synapse.

Synapses determine a direction for the transmission of information. Signals
flow from one cell to the other in a well-defined manner. This will be expressed
in artificial neural networks models by embedding the computing elements in a

1.2 Networks of neurons 19

Fig. 1.11. Transversal view of a synapse [from Stevens 1988]

fused

presynaptic synapse vesicle
cell
(@]
synaptic acetylcholine —» © o o o
cleft o
membrane > < >
o
target cell O <— ionic current

closed channel open channel

Fig. 1.12. Chemical signaling at the synapse

directed graph. A well-defined direction of information flow is a basic element
in every computing model, and is implemented in digital systems by using
diodes and directional amplifiers.

The interplay between electrical transmission of information in the cell
and chemical transmission between cells is the basis for neural information
processing. Cells process information by integrating incoming signals and by
reacting to inhibition. The flow of transmitters from an excitatory synapse
leads to a depolarization of the attached cell. The depolarization must exceed
a threshold, that is, enough ionic channels have to be opened in order to
produce an action potential. This can be achieved by several pulses arriving
simultaneously or within a short time interval at the cell. If the quantity of
transmitters reaches a certain level and enough ionic channels are triggered,

20 1 The Biological Paradigm

the cell reaches its activation threshold. At this moment an action potential
is generated at the axon of this cell.

In most neurons, action potentials are produced at the so-called axon
hillock, the part of the axon nearest to the cell body. In this region of the cell,
the number of ionic channels is larger and the cell’s threshold lower [427]. The
dendrites collect the electrical signals which are then transmitted electroton-
ically, that is through the cytoplasm [420]. The transmission of information
at the dendrites makes use of additional electrical effects. Streams of ions are
collected at the dendrites and brought to the axon hillock. There is spatial
summation of information when signals coming from different dendrites are
collected, and temporal summation when signals arriving consecutively are
combined to produce a single reaction. In some neurons not only the axon
hillock but also the dendrites can produce action potentials. In this case in-
formation processing at the cell is more complex than in the standard case.

It can be shown that digital signals combined in an excitatory or inhibitory
way can be used to implement any desired logical function (Chap. 2). The
number of computing units required can be reduced if the information is not
only transmitted but also weighted. This can be achieved by multiplying the
signal by a constant. Such is the kind of processing we find at the synapses.
Each signal is an all-or-none event but the number of ionic channels triggered
by the signal is different from synapse to synapse. It can happen that a single
synapse can push a cell to fire an action potential, but other synapses can
achieve this only by simultaneously exciting the cell. With each synapse i
(1 <i < n) we can therefore associate a numerical weight w;. If all synapses
are activated at the same time, the information which will be transmitted is
w1 + wg + - -+ + wy,. If this value is greater than the cell’s threshold, the cell
will fire a pulse.

It follows from this description that neurons process information at the
membrane. The membrane regulates both transmission and processing of in-
formation. Summation of signals and comparison with a threshold is a com-
bined effect of the membrane and the cytoplasm. If a pulse is generated, it
is transmitted and the synapses set some transmitter molecules free. From
this description an abstract neuron [72] can be modeled which contains den-
drites, a cell body and an axon. The same three elements will be present in
our artificial computing units.

1.2.4 Storage of information — learning

In neural networks information is stored at the synapses. Some other forms of
information storage may be present, but they are either still unknown or not
very well understood.

A synapse’s efficiency in eliciting the depolarization of the contacted cell
can be increased if more ionic channels are opened. In recent years NMDA
receptors have been studied because they exhibit some properties which could
help explain some forms of learning in neurons [72].

1.2 Networks of neurons 21

NMDA receptors are ionic channels permeable for different kinds of
molecules, like sodium, calcium, or potassium ions. These channels are blocked
by a magnesium ion in such a way that the permeability for sodium and cal-
cium is low. If the cell is brought up to a certain excitation level, the ionic
channels lose the magnesium ion and become unblocked. The permeability for
Ca?t ions increases immediately. Through the flow of calcium ions a chain of
reactions is started which produces a durable change of the threshold level of
the cell [420, 360]. Figure 1.13 shows a diagram of this process.

transmitters are presynaptic
synapse e“. ° set free cell
nu o Mo
+ a
Mg @ ©

membrane il 2 il mMg

NMDA receptor target cell

Mg ion is displaced

2+
by depolarizing the cell Ca—o0

o
(@)
o ° o

Fig. 1.13. Unblocking of an NMDA receptor

NMDA receptors are just one of the mechanisms used by neurons to
increase their plasticity, i.e., their adaptability to changing circumstances.
Through the modification of the membrane’s permeability a cell can be trained
to fire more often by setting a lower firing threshold. NMDA receptors also
offer an explanation for the observed phenomenon that cells which are not
stimulated to fire tend to set a higher firing threshold. The stored information
must be refreshed periodically in order to maintain the optimal permeability
of the cell membrane.

This kind of information storage is also used in artificial neural networks.
Synaptic efficiency can be modeled as a property of the edges of the network.
The networks of neurons are thus connected through edges with different
transmission efficiencies. Information flowing through the edges is multiplied
by a constant which reflects their efficiency. One of the most popular learning
algorithms for artificial neural networks is Hebbian learning. The efficiency of
synapses is increased any time the two cells which are connected through this
synapse fire simultaneously and is decreased when the firing states of the two
cells are uncorrelated. The NMDA receptors act as coincidence detectors of
presynaptic and postsynaptic activity, which in turn leads to greater synaptic
efficiency.

22 1 The Biological Paradigm
1.2.5 The neuron — a self-organizing system

The short review of the properties of biological neurons in the previous sec-
tions is necessarily incomplete and can offer only a rough description of the
mechanisms and processes by which neurons deal with information. Nerve cells
are very complex self-organizing systems which have evolved in the course of
millions of years. How were these exquisitely fine-tuned information processing
organs developed? Where do we find the evolutionary origin of consciousness?

The information processing capabilities of neurons depend essentially on
the characteristics of the cell membrane. Tonic channels appeared very early in
evolution to allow unicellular organisms to get some kind of feedback from the
environment. Consider the case of a paramecium, a protozoan with cilia, which
are hairlike processes which provide it with locomotion. A paramecium has a
membrane cell with ionic channels and its normal state is one in which the
interior of the cell is negative with respect to the exterior. In this state the cilia
around the membrane beat rhythmically and propel the paramecium forward.
If an obstacle is encountered, some ionic channels sensitive to contact open,
let ions into the cell, and depolarize it. The depolarization of the cell leads in
turn to a reversing of the beating direction of the cilia and the paramecium
swims backward for a short time. After the cytoplasm returns to its normal
state, the paramecium swims forward, changing its direction of movement. If
the paramecium is touched from behind, the opening of ionic channels leads to
a forward acceleration of the protozoan. In each case, the paramecium escapes
its enemies [190].

From these humble origins, ionic channels in neurons have been perfected
over millions of years of evolution. In the protoplasm of the cell, ionic chan-
nels are produced and replaced continually. They attach themselves to those
regions of the neurons where they are needed and can move laterally in the
membrane, like icebergs in the sea. The regions of increased neural sensi-
tivity to the production of action potentials are thus changing continuously
according to experience. The electrical properties of the cell membrane are not
totally predetermined. They are also a result of the process by which action
potentials are generated.

Consider also the interior of the neurons. The number of biochemical re-
action chains and the complexity of the mechanical processes occurring in the
neuron at any given time have led some authors to look for its control system.
Stuart Hameroff, for example, has proposed that the cytoskeleton of neurons
does not just perform a static mechanical function, but in some way provides
the cell with feedback control. It is well known that the proteins that form
the microtubules in axons coordinate to move synaptic vesicles and other ma-
terials from the cell body to the synapses. This is accomplished through a
coordinated movement of the proteins, configured like a cellular automaton
[173, 174].

Consequently, transmission, storage, and processing of information are per-
formed by neurons exploiting many effects and mechanisms which we still do

1.3 Artificial neural networks 23

not understand fully. Each individual neuron is as complex or more complex
than any of our computers. For this reason, we will call the elementary compo-
nents of artificial neural networks simply “computing units” and not neurons.
In the mid-1980s, the PDP (Parallel Distributed Processing) group already
agreed to this convention at the insistence of Francis Crick [95].

1.3 Artificial neural networks

The discussion in the last section is only an example of how important it is
to define the primitive functions and composition rules of the computational
model. If we are computing with a conventional von Neumann processor, a
minimal set of machine instructions is needed in order to implement all com-
putable functions. In the case of artificial neural networks, the primitive func-
tions are located in the nodes of the network and the composition rules are
contained implicitly in the interconnection pattern of the nodes, in the syn-
chrony or asynchrony of the transmission of information, and in the presence
or absence of cycles.

1.3.1 Networks of primitive functions

Figure 1.14 shows the structure of an abstract neuron with n inputs. Each
input channel ¢ can transmit a real value z;. The primitive function f com-
puted in the body of the abstract neuron can be selected arbitrarily. Usually
the input channels have an associated weight, which means that the incoming
information z; is multiplied by the corresponding weight w;. The transmitted
information is integrated at the neuron (usually just by adding the different
signals) and the primitive function is then evaluated.

f(wlxl +W2x2 ++ wnxn)

Fig. 1.14. An abstract neuron

If we conceive of each node in an artificial neural network as a primitive
function capable of transforming its input in a precisely defined output, then
artificial neural networks are nothing but networks of primitive functions.
Different models of artificial neural networks differ mainly in the assump-
tions about the primitive functions used, the interconnection pattern, and the
timing of the transmission of information.

24 1 The Biological Paradigm

d(x,y,2)

a,

Fig. 1.15. Functional model of an artificial neural network

Typical artificial neural networks have the structure shown in Figure 1.15.
The network can be thought of as a function @ which is evaluated at the
point (z,y, z). The nodes implement the primitive functions fi, fa, f3, f4 which
are combined to produce @. The function @ implemented by a neural net-
work will be called the network function. Different selections of the weights
a1, qs,...,a5 produce different network functions. Therefore, tree elements
are particularly important in any model of artificial neural networks:

the structure of the nodes,
the topology of the network,
the learning algorithm used to find the weights of the network.

To emphasize our view of neural networks as networks of functions, the
next section gives a short preview of some of the topics covered later in the
book.

1.3.2 Approximation of functions

An old problem in approximation theory is to reproduce a given function
F : IR — IR either exactly or approximately by evaluating a given set of prim-
itive functions. A classical example is the approximation of one-dimensional
functions using polynomials or Fourier series. The Taylor series for a function
F which is being approximated around the point zg is

F(z) = a0+ ai1(z — z0) + ao(z — 20)> + - - + an(x — 20)" + - - -,

whereby the constants ag, ..., a, depend on the function F' and its derivatives
at xg. Figure 1.16 shows how the polynomial approximation can be represented
as a network of functions. The primitive functions z — 1,z +— 2z',..., 2 —
z"™ are computed at the nodes. The only free parameters are the constants
ag, ---, an. The output node additively collects all incoming information and
produces the value of the evaluated polynomial. The weights of the network
can be calculated in this case analytically, just by computing the first n + 1

1.3 Artificial neural networks 25

terms of the Taylor series of F'. They can also be computed using a learning
algorithm, which is the usual case in the field of artificial neural networks.

F(x)

F(x)

Fig. 1.17. A Fourier network

Figure 1.17 shows how a Fourier series can be implemented as a neural
network. If the function F is to be developed as a Fourier series it has the

form
oo

F(z) = (aicos(iz) + b;sin(iz)). (1.2)

i=0

26 1 The Biological Paradigm

An artificial neural network with the sine as primitive function can implement
a finite number of terms in the above expression. In Figure 1.17 the constants
ko, ..., ky determine the wave numbers for the arguments of the sine functions.
The constants dy, . ..,d, play the role of phase factors (with dy = m/2, for
example, we have sin(z + dp) = cos(z)) and we do not need to implement the
cosine explicitly in the network. The constants wy, ..., w, are the amplitudes
of the Fourier terms. The network is indeed more general than the conventional
formula because non-integer wave numbers are allowed as are phase factors
which are not simple integer multiples of /2.

The main difference between Taylor or Fourier series and artificial neural
networks is, however, that the function F' to be approximated is given not
explicitly but implicitly through a set of input-output examples. We know F
only at some points but we want to generalize as well as possible. This means
that we try to adjust the parameters of the network in an optimal manner to
reflect the information known and to extrapolate to new input patterns which
will be shown to the network afterwards. This is the task of the learning
algorithm used to adjust the network’s parameters.

These two simple examples show that neural networks can be used as
universal function approximators, that is, as computing models capable of
approximating a given set of functions (usually the integrable functions). We
will come back to this problem in Chap. 10.

1.3.3 Caveat

At this point we must issue a warning to the reader: in the theory of artificial
neural networks we do not consider the whole complexity of real biological
neurons. We only abstract some general principles and content ourselves with
different levels of detail when simulating neural ensembles. The general ap-
proach is to conceive each neuron as a primitive function producing numerical
results at some points in time. These will be the kinds of model that we will
discuss in the first chapters of this book. However we can also think of arti-
ficial neurons as computing units which produce pulse trains in the way that
biological neurons do. We can then simulate this behavior and look at the
output of simple networks. This kind of approach, although more closely re-
lated to the biological paradigm, is still a very rough approximation of the
biological processes. We will deal with asynchronous and spiking neurons in
later chapters.

1.4 Historical and bibliographical remarks
Philosophical reflection on consciousness and the organ in which it could pos-

sibly be localized spans a period of more than two thousand years. Greek
philosophers were among the first to speculate about the location of the

1.4 Historical and bibliographical remarks 27

soul. Several theories were held by the various philosophical schools of an-
cient times. Galenus, for example, identified nerve impulses with pneumatic
pressure signals and conceived the nervous system as a pneumatic machine.
Several centuries later Newton speculated that nerves transmitted oscillations
of the ether.

Our present knowledge of the structure and physiology of neurons is the
result of 100 years of special research in this field. The facts presented in this
chapter were discovered between 1850 and 1950, with the exception of the
NMDA receptors which were studied mainly in the last decade. The electri-
cal nature of nerve impulses was postulated around 1850 by Emil du Bois-
Reymond and Hermann von Helmholtz. The latter was able to measure the
velocity of nerve impulses and showed that it was not as fast as was previ-
ously thought. Signals can be transmitted in both directions of an axon, but
around 1901 Santiago Ramén y Cajal postulated that the specific networking
of the nervous cells determines a direction for the transmission of information.
This discovery made it clear that the coupling of the neurons constitutes a
hierarchical system.

Ramén y Cajal was also the most celebrated advocate of the neuron the-
ory. His supporters conceived the brain as a highly differentiated hierarchical
organ, while the supporters of the reticular theory thought of the brain as a
grid of undifferentiated axons and of dendrites as organs for the nutrition of
the cell [357]. Ramén y Cajal perfected Golgi’s staining method and published
the best diagrams of neurons of his time, so good indeed that they are still in
use. The word neuron (Greek for nerve) was proposed by the Berlin Professor
Wilhelm Waldeger after he saw the preparations of Ramén y Cajal [418].

The chemical transmission of information at the synapses was studied from
1920 to 1940. From 1949 to 1956, Hodgkin and Huxley explained the mech-
anism by which depolarization waves are produced in the cell membrane. By
experimenting with the giant axon of the squid they measured and explained
the exchange of ions through the cell membrane, which in time led to the now
famous Hodgkin-Huxley differential equations. For a mathematical treatment
of this system of equations see [97].

The Hodgkin—Huxley model was in some ways one of the first artificial neu-
ral models, because the postulated dynamics of the nerve impulses could be
simulated with simple electric networks [303]. At the same time the mathemat-
ical properties of artificial neural networks were being studied by researchers
like Warren McCulloch, Walter Pitts, and John von Neumann. Ever since that
time, research in the neurobiological field has progressed in close collaboration
with the mathematics and computer science community.

Exercises

1. Express the network function function @ in Figure 1.15 in terms of the
primitive functions fi, ..., f4 and of the weights ag, ..., as.

28 1 The Biological Paradigm

2. Modify the network of Figure 1.17 so that it corresponds to a finite number

of addition terms of equation (1.2).
3. Look in a neurobiology book for the full set of differential equations of
the Hodgkin-Huxley model. Write a computer program that simulates an

action potential.

2

Threshold Logic

2.1 Networks of functions

We deal in this chapter with the simplest kind of computing units used to
build artificial neural networks. These computing elements are a generalization
of the common logic gates used in conventional computing and, since they
operate by comparing their total input with a threshold, this field of research
is known as threshold logic.

2.1.1 Feed-forward and recurrent networks

Our review in the previous chapter of the characteristics and structure of bi-
ological neural networks provides us with the initial motivation for a deeper
inquiry into the properties of networks of abstract neurons. From the view-
point of the engineer, it is important to define how a network should behave,
without having to specify completely all of its parameters, which are to be
found in a learning process. Artificial neural networks are used in many cases
as a black box: a certain input should produce a desired output, but how the
network achieves this result is left to a self-organizing process.

XI — I
*2 . F R Y2
X, Ym

Fig. 2.1. A neural network as a black box

In general we are interested in mapping an n-dimensional real input
(x1,2,...,2,) to an m-dimensional real output (y1,¥2,-..,ym). A neural

30 2 Threshold Logic

network thus behaves as a “mapping machine”, capable of modeling a func-
tion F': R™ — IR™. If we look at the structure of the network being used, some
aspects of its dynamics must be defined more precisely. When the function
is evaluated with a network of primitive functions, information flows through
the directed edges of the network. Some nodes compute values which are then
transmitted as arguments for new computations. If there are no cycles in the
network, the result of the whole computation is well-defined and we do not
have to deal with the task of synchronizing the computing units. We just
assume that the computations take place without delay.

H‘\WLC

Fig. 2.2. Function composition

f(g ()

If the network contains cycles, however, the computation is not uniquely
defined by the interconnection pattern and the temporal dimension must be
considered. When the output of a unit is fed back to the same unit, we are
dealing with a recursive computation without an explicit halting condition. We
must define what we expect from the network: is the fixed point of the recursive
evaluation the desired result or one of the intermediate computations? To
solve this problem we assume that every computation takes a certain amount
of time at each node (for example a time unit). If the arguments for a unit
have been transmitted at time ¢, its output will be produced at time ¢ + 1.
A recursive computation can be stopped after a certain number of steps and
the last computed output taken as the result of the recursive computation.

Xt
e F e f Geroto (o))

Fig. 2.3. Recursive evaluation

In this chapter we deal first with networks without cycles, in which the
time dimension can be disregarded. Then we deal with recurrent networks
and their temporal coordination. The first model we consider was proposed
in 1943 by Warren McCulloch and Walter Pitts. Inspired by neurobiology
they put forward a model of computation oriented towards the computational
capabilities of real neurons and studied the question of abstracting universal
concepts from specific perceptions [299).

2.1 Networks of functions 31

We will avoid giving a general definition of a neural network at this point.
So many models have been proposed which differ in so many respects that any
definition trying to encompass this variety would be unnecessarily clumsy. As
we show in this chapter, it is not necessary to start building neural networks
with “high powered” computing units, as some authors do [384]. We will start
our investigations with the general notion that a neural network is a network
of functions in which synchronization can be considered explicitly or not.

2.1.2 The computing units

The nodes of the networks we consider will be called computing elements or
simply units. We assume that the edges of the network transmit information
in a predetermined direction and the number of incoming edges into a node
is not restricted by some upper bound. This is called the unlimited fan-in
property of our computing units.

X1
~

X) —> fx1,x0, 0 Xy)

7

Xn

Fig. 2.4. Evaluation of a function of n arguments

The primitive function computed at each node is in general a function of n
arguments. Normally, however, we try to use very simple primitive functions
of one argument at the nodes. This means that the incoming n arguments
have to be reduced to a single numerical value. Therefore computing units
are split into two functional parts: an integration function g reduces the n
arguments to a single value and the output or activation function f produces
the output of this node taking that single value as its argument. Figure 2.5
shows this general structure of the computing units. Usually the integration
function g is the addition function.

X1

N

X2 f(g(x1,%2 5005 Xp))

7

Xn

Fig. 2.5. Generic computing unit

McCulloch—Pitts networks are even simpler than this, because they use
solely binary signals, i.e., ones or zeros. The nodes produce only binary results

32 2 Threshold Logic

and the edges transmit exclusively ones or zeros. The networks are composed
of directed unweighted edges of excitatory or of inhibitory type. The latter are
marked in diagrams using a small circle attached to the end of the edge. Each
McCulloch—Pitts unit is also provided with a certain threshold value 6.

At first sight the McCulloch—Pitts model seems very limited, since only
binary information can be produced and transmitted, but it already contains
all necessary features to implement the more complex models. Figure 2.6
shows an abstract McCulloch—Pitts computing unit. Following Minsky [311]
it will be represented as a circle with a black half. Incoming edges arrive at
the white half, outgoing edges leave from the black half. Outgoing edges can
fan out any number of times.

X1

X2

Xn

Fig. 2.6. Diagram of a McCulloch—Pitts unit

The rule for evaluating the input to a McCulloch—Pitts unit is the follow-
ing:

e Assume that a McCulloch—Pitts unit gets an input x1, x2, ..., x, through
n excitatory edges and an input y1,y2, . . . , Ym through m inhibitory edges.
e If m > 1 and at least one of the signals y1,y2,...,ym is 1, the unit is

inhibited and the result of the computation is 0.

e Otherwise the total excitation z = z; + z2 + - -+ + x, is computed and
compared with the threshold 6 of the unit (if n = 0 then z = 0). If z > 0
the unit fires a 1, if x < 6 the result of the computation is 0.

This rule implies that a McCulloch—Pitts unit can be inactivated by a sin-
gle inhibitory signal, as is the case with some real neurons. When no inhibitory
signals are present, the units act as a threshold gate capable of implementing
many other logical functions of n arguments.

Figure 2.7 shows the activation function of a unit, the so-called step func-
tion. This function changes discontinuously from zero to one at . When 6
is zero and no inhibitory signals are present, we have the case of a unit pro-
ducing the constant output one. If 6 is greater than the number of incoming
excitatory edges, the unit will never fire.

2.2 Synthesis of Boolean functions 33

0

Fig. 2.7. The step function with threshold 6

In the following subsection we assume provisionally that there is no delay
in the computation of the output.

2.2 Synthesis of Boolean functions

The power of threshold gates of the McCulloch—Pitts type can be illustrated
by showing how to synthesize any given logical function of n arguments. We
deal firstly with the more simple kind of logic gates.

2.2.1 Conjunction, disjunction, negation

Mappings from {0,1}" onto {0,1} are called logical or Boolean functions.
Simple logical functions can be implemented directly with a single McCulloch—
Pitts unit. The output value 1 can be associated with the logical value true
and 0 with the logical value false. It is straightforward to verify that the two
units of Figure 2.8 compute the functions AND and OR respectively.

AND OR

X1

X

X2 Xy

Fig. 2.8. Implementation of AND and OR gates

A single unit can compute the disjunction or the conjunction of n argu-
ments as is shown in Figure 2.9, where the conjunction of three and four
arguments is computed by two units. The same kind of computation requires
several conventional logic gates with two inputs. It should be clear from this
simple example that threshold logic elements can reduce the complexity of
the circuit used to implement a given logical function.

34 2 Threshold Logic

AND OR
X1
X1
X2
X2 N
3
X3 x4

Fig. 2.9. Generalized AND and OR gates

As is well known, AND and OR gates alone cannot be combined to produce
all logical functions of n variables. Since uninhibited threshold logic elements
are capable of implementing more general functions than conventional AND or
OR gates, the question of whether they can be combined to produce all logical
functions arises. Stated another way: is inhibition of McCulloch—Pitts units
necessary or can it be dispensed with? The following proposition shows that
it is necessary. A monotonic logical function f of n arguments is one whose
value at two given n-dimensional points x = (z1,...,2,) and y = (Y1, -, Yn)
is such that f(x) > f(y) whenever the number of ones in the input y is a
subset of the ones in the input z. An example of a non-monotonic logical
function of one argument is logical negation.

Proposition 1. Uninhibited threshold logic elements of the McCulloch—Pitts
type can only implement monotonic logical functions.

Proof. An example shows the kind of argumentation needed. Assume that the
input vector (1,1,...,1) is assigned the function value 0. Since no other vector
can set more edges in the network to 1 than this vector does, any other input
vector can also only be evaluated to 0. In general, if the ones in the input
vector y are a subset of the ones in the input vector x, then the first cannot
set more edges to 1 than x does. This implies that f(z) > f(y), as had to be

shown. O
X1 AND - x, NOR NOT
X1 X1
X1
X2 Xy

Fig. 2.10. Logical functions and their realization

The units of Figure 2.10 show the implementation of some non-monotonic
logical functions requiring inhibitory connections. Logical negation, for exam-
ple, can be computed using a McCulloch—Pitts unit with threshold 0 and an
inhibitory edge. The other two functions can be verified by the reader.

2.2 Synthesis of Boolean functions 35

X2
0 1
1 0
1 0
X1
0 1

X3
Fig. 2.11. Function values of a logical function of three variables

X2

X1

X —
3 xptx, tx3=1

Fig. 2.12. Separation of the input space for the OR function

2.2.2 Geometric interpretation

It is very instructive to visualize the kind of functions that can be computed
with McCulloch—-Pitts cells by using a diagram. Figure 2.11 shows the eight
vertices of a three-dimensional unit cube. Each of the three logical variables
x1,%2 and x3 can assume one of two possible binary values. There are eight
possible combinations, represented by the vertices of the cube. A logical func-
tion is just an assignment of a 0 or a 1 to each of the vertices. The figure
shows one of these assignments. In the case of n variables, the cube consists
of 2" vertices and admits 22" different binary assignments.

McCulloch—Pitts units divide the input space into two half-spaces. For a
given input (21,22, z3) and a threshold € the condition x; + 2o + 23 > 0 is
tested, which is true for all points to one side of the plane with the equation
x1 + x2 + x3 = 0 and false for all points to the other side (without including
the plane itself in this case). Figure 2.12 shows this separation for the case in

36 2 Threshold Logic

X2

xptxy,txy=2

X1

X —
3 xptx, tx3=1

Fig. 2.13. Separating planes of the OR and majority functions

which 6 = 1, i.e., for the OR function. Only those vertices above the separating
plane are labeled 1.

The majority function of three variables divides input space in a similar
manner, but the separating plane is given by the equation x; + x2 + z3 = 2.
Figure 2.13 shows the additional plane. The planes are always parallel in the
case of McCulloch—Pitts units. Non-parallel separating planes can only be
produced using weighted edges.

2.2.3 Constructive synthesis

Every logical function of n variables can be written in tabular form. The
value of the function is written down for every one of the possible binary
combinations of the n inputs. If we want to build a network to compute
this function, it should have n inputs and one output. The network must
associate each input vector with the correct output value. If the number of
computing units is not limited in some way, it is always possible to build or
synthesize a network which computes this function. The constructive proof of
this proposition profits from the fact that McCulloch—Pitts units can be used
as binary decoders.

Consider for example the vector (1,0,1). It is the only one which fulfills
the condition x; A—za Azs. This condition can be tested by a single computing
unit (Figure 2.14). Since only the vector (1,0, 1) makes this unit fire, the unit
is a decoder for this input.

Assume that a function F' of three arguments has been defined according
to the following table:

To compute this function it is only necessary to decode all those vectors
for which the function’s value is 1. Figure 2.15 shows a network capable of
computing the function F.

2.2 Synthesis of Boolean functions 37

Fig. 2.14. Decoder for the vector (1,0, 1)

input vectors F
0,0,1) 1
(0,1,0) 1
all others 0
X1
X2 1
X3

Fig. 2.15. Synthesis of the function F

The individual units in the first layer of the composite network are de-
coders. For each vector for which F is 1 a decoder is used. In our case we need
just two decoders. Components of each vector which must be 0 are transmit-
ted with inhibitory edges, components which must be 1 with excitatory ones.
The threshold of each unit is equal to the number of bits equal to 1 that
must be present in the desired input vector. The last unit to the right is a
disjunction: if any one of the specified vectors can be decoded this unit fires
al.

It is straightforward to extend this constructive method to other Boolean
functions of any other dimension. This leads to the following proposition:

Proposition 2. Any logical function F : {0,1}™ — {0,1} can be computed
with a McCulloch—Pitts network of two layers.

No attempt has been made here to minimize the number of computing
units. In fact, we need as many decoders as there are ones in the table of
function values. An alternative to this simple constructive method is to use
harmonic analysis of logical functions, as will be shown in Sect. 2.5.

We can also consider the minimal possible set of building blocks needed to
implement arbitrary logical functions when the fan-in of the units is bounded

38 2 Threshold Logic

in some way. The circuits of Figure 2.14 and Figure 2.15 use decoders of n
inputs. These decoders can be built of simpler cells, for example, two units ca-
pable of respectively implementing the AND function and negation. Inhibitory
connections in the decoders can be replaced with a negation gate. The output
of the decoders is collected at a conjunctive unit. The decoder of Figure 2.14
can be implemented as shown in Figure 2.16. The only difference from the
previous decoder are the negated inputs and the higher threshold in the AND
unit. All decoders for a row of the table of a logical function can be designed
in a similar way. This immediately leads to the following proposition:

Proposition 3. All logical functions can be implemented with a network com-
posed of units which exclusively compute the AND, OR, and NOT functions.

The three units AND, NOT and OR are called a logical basis because of
this property. Since OR can be implemented using AND and NOT units, these
two alone constitute a logical basis. The same happens with OR and NOT
units. John von Neumann showed that through a redundant coding of the
inputs (each variable is transmitted through two lines) AND and OR units
alone can constitute a logical basis [326].

X

0
()

X3

Fig. 2.16. A composite decoder for the vector (0,0, 1)

2.3 Equivalent networks

We can build simpler circuits by using units with more general properties,
for example weighted edges and relative inhibition. However, as we show in
this section, circuits of McCulloch—Pitts units can emulate circuits built out
of high-powered units by exploiting the trade-off between the complexity of
the network versus the complexity of the computing units.

2.3.1 Weighted and unweighted networks

Since McCulloch—Pitts networks do not use weighted edges the question of
whether weighted networks are more general than unweighted ones must be
answered. A simple example shows that both kinds of networks are equivalent.

Assume that three weighted edges converge on the unit shown in Fig-
ure 2.17. The unit computes

2.3 Equivalent networks 39

Fig. 2.17. Weighted unit

0.2x1 + 0.425 + 0.323 > 0.7.
But this is equivalent to
21‘1 + 41‘2 + 31’3 Z 7,

and this computation can be performed with the network of Figure 2.18.

X1

X2

X3

Fig. 2.18. Equivalent computing unit

The figure shows that positive rational weights can be simulated by simply
fanning-out the edges of the network the required number of times. This means
that we can either use weighted edges or go for a more complex topology of
the network, with many redundant edges. The same can be done in the case
of irrational weights if the number of input vectors is finite (see Chap. 3,
Exercise 3).

2.3.2 Absolute and relative inhibition

In the last subsection we dealt only with the case of positive weights. Two
classes of inhibition can be identified: absolute inhibition corresponds to the
one used in McCulloch—Pitts units. Relative inhibition corresponds to the case
of edges weighted with a negative factor and whose effect is to lower the firing
threshold when a 1 is transmitted through this edge.

Proposition 4. Networks of McCulloch—Pitts units are equivalent to net-
works with relative inhibition.

40 2 Threshold Logic

Proof. Tt is only necessary to show that each unit in a network where relative
inhibition is used is equivalent to one or more units in a network where ab-
solute inhibition is used. It is clear that it is possible to implement absolute
inhibition with relative inhibitory edges. If the threshold of a unit is the in-
teger m and if n excitatory edges impinge on it, the maximum possible total
excitation for this unit is n — m. If m > n the unit never fires and the in-
hibitory edge is irrelevant. It suffices to fan out the inhibitory edge n —m +1
times and make all these edges meet at the unit. When a 1 is transmitted
through the inhibitory edges the total amount of inhibition is n —m + 1 and
this shuts down the unit. To prove that relative inhibitory edges can be sim-
ulated with absolute inhibitory ones, refer to Figure 2.19. The network to
the left contains a relative inhibitory edge, the network to the right absolute
inhibitory ones. The reader can verify that the two networks are equivalent.
Relative inhibitory edges correspond to edges weighted with —1. We can also
accept any other negative weight w. In that case the threshold of the unit to
the right of Figure 2.19 should be m + w instead of m + 1. Therefore networks
with negative weights can be simulated using unweighted McCulloch—Pitts

elements. a
relative inhibition equivalent circuit with absolute inhibition
X
X2
X1 X, \ ™
X2 y
X, -
y

Fig. 2.19. Two equivalent networks

As shown above, we can implement any kind of logical function using
unweighted networks. What we trade is the simplicity of the building blocks for
a more convoluted topology of the network. Later we will always use weighted
networks in order to simplify the topology.

2.3.3 Binary signals and pulse coding

An additional question which can be raised is whether binary signals are
not a very limited coding strategy. Are networks in which the communication
channels adopt any of ten or fifteen different states more efficient than channels
which adopt only two states, as in McCulloch—Pitts networks? To give an

2.3 Equivalent networks 41

answer we must consider that unit states have a price, in biological networks
as well as in artificial ones. The transmitted information must be optimized
using the number of available switching states.

€
/T\
|
\
number of !
representable |
values / |
/ |
\
|
1 2 3 4 5 6

base

Fig. 2.20. Number of representable values as a function of the base

Assume that the number of states per communication channel is b and that
¢ channels are used to input information. The cost K of the implementation
is proportional to both quantities, i.e., K = ybc, where 7 is a proportionality
constant. Using ¢ channels with b states, b¢ different numbers can be repre-
sented. This means that ¢ = K/vb and, if we set kK = K /v, we are seeking the
numerical base b which optimizes the function b*/?. Since we assume constant
cost, x is a constant. Figure 2.20 shows that the optimal value for b is the
Euler constant e. Since the number of channel states must be an integer, three
states would provide a good approximation to the optimal coding strategy.
However, in electronic and biological systems decoding of the signal plays such
an important role that the choice of two states per channel becomes a better
alternative.

Wiener arrived at a similar conclusion through a somewhat different ar-
gument [452]. The binary nature of information transmission in the nervous
system seems to be an efficient way to transport signals. However, in the
next chapters we will assume that the communication channels can transport
arbitrary real numbers. This makes the analysis simpler than when we have
to deal explicitly with frequency modulated signals, but does not lead to a
minimization of the resources needed for a technical implementation. Some
researchers prefer to work with so-called weightless networks which operate
exclusively with binary data.

42 2 Threshold Logic

2.4 Recurrent networks

We have already shown that feed-forward networks can implement arbitrary
logical functions. In this case the dimension of the input and output data is
predetermined. In many cases, though, we want to perform computations on
an input of variable length, for example, when adding two binary numbers
being fed bit for bit into a network, which in turn produces the bits of the
result one after the other. A feed-forward network cannot solve this problem
because it is not capable of keeping track of previous results and, in the case
of addition, the carry bit must be stored in order to be reused. This kind of
problem can be solved using recurrent networks, i.e., networks whose partial
computations are recycled through the network itself. Cycles in the topology
of the network make storage and reuse of signals possible for a certain amount
of time after they are produced.

2.4.1 Stored state networks

McCulloch—Pitts units can be used in recurrent networks by introducing a
temporal factor in the computation. We will assume that computation of the
activation of each unit consumes a time unit. If the input arrives at time ¢
the result is produced at time ¢t + 1. Up to now, we have been working with
units which produce results without delay. The numerical capabilities of any
feed-forward network with instantaneous computation at the nodes can be
reproduced by networks of units with delay. We only have to take care to
coordinate the arrival of the input values at the nodes. This could make the
introduction of additional computing elements necessary, whose sole mission
is to insert the necessary delays for the coordinated arrival of information.
This is the same problem that any computer with clocked elements has to
deal with.

input

output

Fig. 2.21. Network for a binary scaler

2.4 Recurrent networks 43

Figure 2.21 shows a simple example of a recurrent circuit. The network
processes a sequence of bits, giving off one bit of output for every bit of input,
but in such a way that any two consecutive ones are transformed into the
sequence 10. The binary sequence 00110110 is transformed for example into
the sequence 00100100. The network recognizes only two consecutive ones
separated by at least a zero from a similar block.

2.4.2 Finite automata

The network discussed in the previous subsection is an example of an au-
tomaton. This is an abstract device capable of assuming different states which
change according to the received input. The automaton also produces an out-
put according to its momentary state. In the previous example, the state of
the automaton is the specific combination of signals circulating in the net-
work at any given time. The set of possible states corresponds to the set of
all possible combinations of signals traveling through the network.

state transitions output table
state state
QO Ql QO Ql
0 0 9 0 0 1
input input
1ol e 1of

Fig. 2.22. State tables for a binary delay

Finite automata can take only a finite set of possible states and can react
only to a finite set of input signals. The state transitions and the output of an
automaton can be specified with a table, like the one shown in Figure 2.22.
This table defines an automaton which accepts a binary signal at time ¢ and
produces an output at time ¢ + 1. The automaton has two states, Qo and @1,
and accepts only the values 0 or 1. The first table shows the state transitions,
corresponding to each input and each state. The second table shows the output
values corresponding to the given state and input. From the table we can see
that the automaton switches from state)y to state @)1 after accepting the
input 1. If the input bit is a 0, the automaton remains in state Qq. If the state
of the automaton is @7 the output at time ¢ + 1 is 1 regardless of whether 1
or 0 was given as input at time ¢. All other possibilities are covered by the
rest of the entries in the two tables.

The diagram in Figure 2.23 shows how the automaton works. The values
at the beginning of the arrows represent an input bit for the automaton. The
values in the middle of the arrows are the output bits produced after each

44 2 Threshold Logic

new input. An input of 1, for example, produces the transition from state Qg
to state Q1 and the output 0. The input 0 produces a transition to state Q.
The automaton is thus one that stores only the last bit of input in its current
state.

Fig. 2.23. Diagram of a finite automaton

Finite automata without input from the outside, i.e., free-wheeling au-
tomata, unavoidably fall in an infinite loop or reach a final constant state. This
is why finite automata cannot cover all computable functions, for whose com-
putation an infinite number of states are needed. A Turing machine achieves
this through an infinite storage band which provides enough space for all
computations. Even a simple problem like the multiplication of two arbitrary
binary numbers presented sequentially cannot be solved by a finite automaton.
Although our computers are finite automata, the number of possible states is
so large that we consider them as universal computing devices for all practical
purposes.

2.4.3 Finite automata and recurrent networks

We now show that finite automata and recurrent networks of McCulloch—Pitts
units are equivalent. We use a variation of a constructive proof due to Minsky
[311].

Proposition 5. Any finite automaton can be simulated with a network of
McClulloch—Pitts units.

Proof. Figure 2.24 is a diagram of the network needed for the proof. Assume
that the input signals are transmitted through the input lines I; to I,, and
at each moment ¢ only one of these lines is conducting a 1. All other input
lines are passive (set to 0). Assume that the network starts in a well-defined

2.4 Recurrent networks 45

(ad hoc connections for state transitions)

/

\
D
"D

1

>
TR

Imx - %/

(ad hoc connections for output signals)

o 0 O

Fig. 2.24. Implementation of a finite automaton with McCulloch—Pitts units

state ;. This means that one, and only one, of the lines labeled @1, ..., Q.
is set to 1 and the others to 0. At time ¢ + 1 only one of the AND units can
produce a 1, namely the one in which both input and state line are set to 1.
The state transition is controlled by the ad hoc connections defined by the
user in the upper box. If, for example, the input I; and the state 1 at time ¢
produce the transition to state Q2 at time t + 1, then we have to connect the
output of the upper left AND unit to the input of the OR unit with the output
line named Q2 (dotted line in the diagram). This output will become active
at time ¢ 4+ 2. At this stage a new input line must be set to 1 (for example
I5) and a new state transition will be computed (@, in our example). The
connections required to produce the desired output are defined in a similar
way. This can be controlled by connecting the output of each AND unit to

46 2 Threshold Logic

the corresponding output line O1,...,Oy using a box of ad hoc connections
similar to the one already described. O

A disadvantage of this constructive method is that each simulated finite
automaton requires a special set of connections in the upper and lower boxes.
It is better to define a universal network capable of simulating any other finite
automaton without having to change the topology of the network (under the
assumption of an upper bound for the size of the simulated automata). This is
indeed an active field of research in which networks learn to simulate automata
[408]. The necessary network parameters are found by a learning algorithm. In
the case of McCulloch—-Pitts units the available degrees of freedom are given
by the topology of the network.

2.4.4 A first classification of neural networks

The networks described in this chapter allow us to propose a preliminary
taxonomy of the networks we will discuss in this book. The first clear sepa-
ration line runs between weighted and unweighted networks. It has already
been shown that both classes of models are equivalent. The main difference is
the kind of learning algorithm that can be used. In unweighted networks only
the thresholds and the connectivity can be adapted. In weighted networks the
topology is not usually modified during learning (although we will see some
algorithms capable of doing this) and only an optimal combination of weights
is sought.

The second clear separation is between synchronous and asynchronous
models. In synchronous models the output of all elements is computed in-
stantaneously. This is always possible if the topology of the network does not
contain cycles. In some cases the models contain layers of computing units and
the activity of the units in each layer is computed one after the other, but in
each layer simultaneously. Asynchronous models compute the activity of each
unit independently of all others and at different stochastically selected times
(as in Hopfield networks). In these kinds of models, cycles in the underlying
connection graph pose no particular problem.

|
X H F(Q:g(x1,x2,...,%,))
x,,/v

Fig. 2.25. A unit with stored state @

Finally, we can distinguish between models with or without stored unit
states. In Figure 2.5 we gave an example of a unit without stored state. Fig-
ure 2.25 shows a unit in which a state @ is stored after each computation.

2.5 Harmonic analysis of logical functions 47

The state @ can modify the output of the unit in the following activation.
If the number of states and possible inputs is finite, we are dealing with a
finite automaton. Since any finite automaton can be simulated by a network
of computing elements without memory, these units with a stored state can
be substituted by a network of McCulloch—Pitts units. Networks with stored-
state units are thus equivalent to networks without stored-state units. Data is
stored in the network itself and in its pattern of recursion.

It can be also shown that time varying weights and thresholds can be
implemented in a network of McCulloch—Pitts units using cycles, so that net-
works with time varying weights and thresholds are equivalent to networks
with constant parameters, whenever recursion is allowed.

2.5 Harmonic analysis of logical functions

An interesting alternative for the automatic synthesis of logic functions and
for a quantification of their implementation complexity is to do an analysis
of the distribution of its non-zero values using the tools of harmonic analysis.
Since we can tabulate the values of a logical function in a sequence, we can
think of it as a one-dimensional function whose fundamental “frequencies” can
be extracted using the appropriate mathematical tools. We will first deal with
this problem in a totally general setting and then show that the Hadamard—
Walsh transform is the tool we are looking for.

2.5.1 General expression

Assume that we are interested in expressing a function f : IR™ — IR as a linear
combination of n functions fi, fo,..., f, using the n constants ai,as, ..., a,
in the following form

f=aifit+asfo+---+anfn.

The domain and range of definition are the same for f and the base functions.
We can determine the quadratic error E of the approximation in the whole
domain of definition V for given constants ag,...,a, by computing

E=/(f—(a1f1+a2f2+---+anfn))2dV-
s

Here we are assuming that f and the functions f;, ¢ = 1,...,n, are integrable
in its domain of definition V. Since we want to minimize the quadratic error
FE we compute the partial derivatives of F with respect to a1, as,...,a, and
set them to zero:

dE
:*2/fi(f*(hfl*azfzf"-—anfn)dV:O, fori=1,...,n
i 1%

da

48 2 Threshold Logic

This leads to the following set of n equations expressed in a simplified notation:

a [fifivas [fifesvan [fifa= [5 oriz i
Expressed in matrix form the set of equations becomes:

Jfufe [fife - [fifn a Jhf
[fafy [fafe [fofn az [fof

[fufs [futo - [futn) \an [fuf

This expression is very general. The only assumption we have used is the
integrability of the partial products of the form f; f; and f;f. Since no special
assumptions on the integral were used, it is also possible to use a discrete
version of this equation. Assume that the function f has been defined at m
points and let the symbol Y f;f; stand for >°/"; fi(z)fj(xx). In this case
the above expression transforms to

Y fifr X fifa o fifa ay Y ff
Y fofi Do fofa D fafu as > fof

S hh S e S huda) \an) \Sfus

The general formula for the polynomial approximation of m data points
(r1,91), -+, (Tm,Ym) using the primitive functions z°, z!, 22,... 2"~! trans-

lates directly into

m Sy ~~Zz?71 ay Sy
T ng oy a DTy

[N~}

Sart Sap e patn?) \an)\ Sy

In the case of base functions that are mutually orthogonal, the integrals
| fif; vanish when k # j. In this case the n x n matrix is diagonal and the
above equation becomes very simple. Assume, as in the case of the Fourier
transform, that the functions are sines and cosines of the form sin(k;z) and
cos(k;x). Assume that no two sine functions have the same integer wave num-
ber k; and no two cosine functions the same integer wave number £;. In this
case the integral fo% sin(k;x) sin(k;x) is equal to m, whenever ¢ = j, other-
wise it vanishes. The same is true for the cosine functions. The expression
transforms then to

ay JAf

as [f2f

an [fuf

2.5 Harmonic analysis of logical functions 49

which is just another way of computing the coefficients for the Fourier ap-
proximation of the function f.

2.5.2 The Hadamard—Walsh transform

In our case we are interested in expressing Boolean functions in terms of a
set of primitive functions. We adopt bipolar coding, so that now the logical
value false is represented by —1 and the logical value true by 1. In the case
of n logical variables x1, ..., x, and the logical functions defined on them, we
can use the following set of 2™ primitive functions:

e The constant function (x1,...,2,) — 1
e The Z monomials (21, ...,2Z,) — @, T, - - 21, where k = 1,...,n and
l1,la,..., 1k is a set of k different indices in {1,2,...,n}

All these functions are mutually orthogonal. In the case of two input vari-
ables the transformation becomes:

a1 1 1 11 fl
4 ag . -1 1-11 f2
as | | -1-1 11 f3
a4 1-1-11 fa

In the general case we compute 2™ coefficients using the formula

ax f1
ag f2
agn f2n

where the matrix H,, is defined recursively as

1 Hn—l Hn—l
H, ==
2 (Hnl Hnl)

1/ 11
H1_§(11)'

The AND function can be expressed using this simple prescription as

whereby

1
T AN T = 1(72 + 2$1 + 21‘2 + 21‘11‘2).

The coefficients are the result of the following computation:

a1 1 1 11\ [f
as -1 1211 | £

as | T2l -1-1 11|]| fs
as 1-1-11) \ fu

50 2 Threshold Logic

The expressions obtained for the logical functions can be wired as net-
works using weighted edges and only two operations, addition and binary
multiplication. The Hadamard—Walsh transform is consequently a method for
the synthesis of Boolean functions. The next step, that is, the optimization of
the number of components, demands additional techniques which have been
extensively studied in the field of combinatorics.

2.5.3 Applications of threshold logic

Threshold units can be used in any application in which we want to reduce
the execution time of a logic operation to possibly just two layers of computa-
tional delay without employing a huge number of computing elements. It has
been shown that the parity and majority functions, for example, cannot be
implemented in a fixed number of layers of computation without using an ex-
ponentially growing number of conventional logic gates [148, 464], even when
unbounded fan-in is used. The majority function k£ out of n is a threshold
function implementable with just a single McCulloch-Pitts unit. Although
circuits built from n threshold units can be built using a polynomial number
P(n) of conventional gates the main difference is that conventional circuits
cannot guarantee a constant delay. With threshold elements we can build mul-
tiplication or division circuits that guarantee a constant delay for 32 or 64-bit
operands. Any symmetric Boolean function of n bits can in fact be built from
two layers of computing units using n+1 gates [407]. Some authors have devel-
oped circuits of threshold networks for fast multiplication and division, which
are capable of operating with constant delay for a variable number of data
bits [405]. Threshold logic offers thus the possibility of harnessing parallelism
at the level of the basic arithmetic operations.

X

A3

Fig. 2.26. Fault-tolerant gate

Threshold logic also offers a simpler way to achieve fault-tolerance. Fig-
ure 2.26 shows an example of a unit that can be used to compute the conjunc-
tion of three inputs with inherent fault tolerance. Assume that three inputs
x1, 2,23 can be transmitted, each with probability p of error. The probabil-
ity of a false result when x1,x2 and z3 are equal, and we are computing the
conjunction of the three inputs, is 3p, since we assume that all three values
are transmitted independently of each other. But assume that we transmit

2.5 Harmonic analysis of logical functions 51

each value using two independent lines. The gate of Figure 2.26 has a thresh-
old of 5, that is, it will produce the correct result even in the case where an
input value is transmitted with an error. The probability that exactly two
ones arrive as zeros is p? and, since there are 15 combinations of two out of
six lines, the probability of getting the wrong answer is 15p? in this case. If p
is small enough then 15p? < 3p and the performance of the gate is improved
for this combination of input values. Other combinations can be analyzed in a
similar way. If threshold units are more reliable than the communication chan-
nels, redundancy can be exploited to increase the reliability of any computing
system.

Fig. 2.27. A fault-tolerant AND built of noisy components

When the computing units are unreliable, fault tolerance is achieved using
redundant networks. Figure 2.27 is an example of a network built using four
units. Assume that the first three units connected directly to the three bits of
input x1, 2, x3 all fire with probability 1 when the total excitation is greater
than or equal to the threshold 6 but also with probability p when it is 8 — 1.
The duplicated connections add redundancy to the transmitted bit, but in
such a way that all three units fire with probability one when the three bits
are 1. Each unit also fires with probability p if two out of three inputs are 1.
However each unit reacts to a different combination. The last unit, finally, is
also noisy and fires any time the three units in the first level fire and also with
probability p when two of them fire. Since, in the first level, at most one unit
fires when just two inputs are set to 1, the third unit will only fire when all
three inputs are 1. This makes the logical circuit, the AND function of three
inputs, built out of unreliable components error-proof. The network can be
simplified using the approach illustrated in Figure 2.26.

52 2 Threshold Logic

2.6 Historical and bibliographical remarks

Warren McCulloch started pondering networks of artificial neurons as early
as 1927 but had problems formulating a general, biologically plausible model
since at that time inhibition in neurons had not yet been confirmed. He also
had problems with the mathematical treatment of recurrent networks. Inhi-
bition and recurrent pathways in the brain were confirmed in the 1930s and
this cleared the way for McCulloch’s investigations.

The McCulloch—Pitts model was proposed at a time when Norbert Wiener
and Arturo Rosenblueth had started discussing the important role of feedback
in biological systems and servomechanisms [301]. Wiener and his circle had
published some of these ideas in 1943 [297]. Wiener’s book Cybernetics, which
was the first best-seller in the field of Artificial Intelligence, is the most influ-
ential work of this period. The word cybernetics was coined by Wiener and
was intended to underline the importance of adaptive control in living and
artificial systems. Wiener himself was a polymath, capable of doing first class
research in mathematics as well as in other fields, such as physiology and
medicine.

McCulloch and Pitts’ model was superseded rapidly by more powerful ap-
proaches. Although threshold elements are, from the combinatorial point of
view, more versatile than conventional logic gates, there is a problem with the
assumed unlimited fan-in. Current technology has been optimized to handle a
limited number of incoming signals into a gate. A possible way of circumvent-
ing the electrical difficulties could be the use of optical computing elements
capable of providing unlimited fan-in [278]. Another alternative is the defini-
tion of a maximal fan-in for threshold elements that could be produced using
conventional technology. Some experiments have been conducted in this di-
rection and computers have been designed using exclusively threshold logic
elements. The DONUT computer of Lewis and Coates was built in the 1960s
using 614 gates with a maximal fan-in of 15. The same processor built with
NOR gates with a maximal fan-in of 4 required 2127 gates, a factor of ap-
proximately 3.5 more components than in the former case [271].

John von Neumann [326] extensively discussed the model of McCulloch
and Pitts and looked carefully at its fault tolerance properties. He examined
the question of how to build a reliable computing mechanism built of unre-
liable components. However, he dealt mainly with the redundant coding of
the units’ outputs and a canonical building block, whereas McCulloch and his
collaborator Manuel Blum later showed how to build reliable networks out of
general noisy threshold elements [300]. Winograd and Cowan generalized this
approach by replicating modules according to the requirements of an error-
correcting code [458]. They showed that sparse coding of the input signals,
coupled with error correction, makes possible fault-tolerant networks even in
the presence of transmission or computational noise [94].

2.6 Historical and bibliographical remarks 53

Exercises

10.

. Design a McCulloch—Pitts unit capable of recognizing the letter “T” dig-

itized in a 10 x 10 array of pixels. Dark pixels should be coded as ones,
white pixels as zeroes.

Build a recurrent network capable of adding two sequential streams of bits
of arbitrary finite length.

Show that no finite automaton can compute the product of two sequential
streams of bits of arbitrary finite length.

The parity of n given bits is 1 if an odd number of them is equal to 1,
otherwise it is 0. Build a network of McCulloch—Pitts units capable of
computing the parity function of two, three, and four given bits.

How many possible states can assume the binary scaler in Figure 2.217
Write the state and output tables for an equivalent finite automaton.
Design a network like the one shown in Figure 2.24 capable of simulating
the finite automaton of the previous exercise.

Find polynomial expressions corresponding to the OR and XOR Boolean
functions using the Hadamard—Walsh transform.

Show that the Hadamard—Walsh transform can be computed recursively,
so that the number of multiplications becomes O(nlogn), where n is the
dimension of the vectors transformed (with n a power of two).

What is the probability of error in the case of the fault-tolerant gate shown
in Figure 2.267 Consider one, two, and three faulty input bits.

The network in Figure 2.27 consists of unreliable computing units. Sim-
plify the network. What happens if the units and the transmission channels
are unreliable?

