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1. Introduction 
A modern view of the relation between brain and mind is based on the neuroscience paradigm 
[3], according to which the architecture of the brain is determined by connections between 
neurons, their inhibitory or excitatory character and also by the strength of the connections. 
Human brain displays a great plasticity, synapses are perpetually formed (but also deleted) 
during a learning process. It can be stated, that an ability of brain to perform not only 
cognitive activities, but also to serve as memory and control center for our motoric activities, 
is fully encoded by its architecture. The metaphor of a human brain as a computer should be 
therefore formulated in such a way, that a computer is a parallel distributed computer 
(containing many billions of neurons, elementary processors interconnected into a complex 
neural network). A program in such a parallel computer is directly encoded in the architecture 
of the neural network, i.e. human brain is a single-purpose parallel computer represented by 
a neural network, which can not be reprogrammed without a change of its architecture.  
 It follows from the above general statement that the mind with the brain creates one 
integral unit, which is characterized by a complementary dualism. The mind is in this 
approach understood as a program carried out by the brain, while this program is specified by 
architecture of the distributed neural network representing the brain. The brain and the mind 
are two different aspects of the same object:  

(1) When talking about the brain, we have in mind a „hardware“ structure, 
biologically determined by neurons and their synaptic connections (formally 
represented by a neural network), on the other hand.  

(2) When talking about the mind, we have in mind cognitive and other similar 
activities of the brain, which are carried out on a symbolic level, where the 
transformation of symbolic information is processed on the basis of 
(simple) rules.  

A complementary dualism between brain and mind causes certain difficulties in the 
interpretation of cognitive activities of mind. A purely neural approach to the interpretation of 
cognitive activities of mind focuses on the search of neural correlates of neural activities and 
cognitive activities (connectionism). The application of the neural paradigm for the 
interpretation of symbolic cognitive activities has a „side effect“ in „dissolving“ of these 
activities in their microscopic description, symbols quasi „disappear“ in the detailed 
description of activities of neurons, strengths of synaptic connections etc. On the other side, 
the absolute acceptance of symbolic paradigm in interpretation of cognitive activities of mind 
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(cognitivism), ignoring of the fact, that mind is thoroughly embedded in brain, leads to 
a conceptual sterility, to an effort to explain cognitive activities of human mind only in the 
phenomenological terms derived from the concept of symbol. It leads to symbolic constructs 
(methods, algorithms etc.), for which there usually does not exist any experimental support in 
neuroscience. The goal of this paper is to highlight an alternative approach, which may 
overcome the gap between the connectionist and cognitivistic approach in the description and 
interpretation of cognitive activities of the human brain [10-13]. We shall show, that the 
application of a distributed representation allows to integrate connectionism and cognitivism, 
where mental representations (symbols) are specified by distributed patterns of neural 
activities, while over these distributed patterns we can introduce formal algebraic operations, 
which not only allow to mathematically model cognitive operations, but also allow to 
simulate processes of storage and retrieval of information from memory.  

 
....

neural network

distributed 
representation

 
 
Figure 1. A visualization of the transition from neural network to distributed representation. The state of neural 
network in the time t is given by the activities of single neurons, which are determined by the activities in the 
previous time t-1 and by weight coefficients of single oriented connections. Using a certain abstraction, these 
activities can be ordered into one big one-dimensional array (vector) of real numbers (their size is determined by 
the level of gray of the corresponding component – neuron). In the distributed representation the architecture of 
the neural network is ignored, i.e. two distributed representations must be understood as totally independent 
without mutual relations, their incidental connections derived from neural network are completely ignored. New 
unary and binary operations are introduced in the distributed representation, which enable to create new 
distributed representations from the original ones.  

 
 We shall turn our attention to a nontraditional style of performing calculation by using 
distributed patterns. This approach is substantially different from classical numeric 
and symbolic computations and it is a suitable model tool for understanding of global 
properties of neural networks. We shall show, that such a „neurocomputing“ is based on 
extensive randomly created patterns (represented by multidimensional vectors with random 
entries), see fig. 1. This approach, which basic principles were formulated already at the end 
of sixties [2,4,5,9,14], was crowned by a series of works by Tony Plate [7-9] about 
„holographic reduced representation“ (HRR). We shall show which types of computation can 
be implemented in this approach and whether they help us to understand the processes in the 
brain during cognitive activities. Our addition to the development of HRR consists in its 
application to modeling of cognitive processes of reasoning by application of rules modus 
ponens a modus tollens. Kanerva [16-18] in the middle of nineties proposed a certain 
alternative to HRR, which is based on randomly generated binary vectors. 
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2. A mathematical formulation of holographic representation 
The aim of this chapter is a presentation of basic properties of a holographic representation, 
which was developed by A. Plate [7-9]. Its basic notion is a conceptual vector, which is 
represented by an n-dimensional vector  

( )0 2 1
n

nR a ,a ,...,a −∈ ⇒ =a a                                               (1) 
where its components are random numbers with a standard normal distribution  

( ) { }0 1 0 1 1ia N , n , ,...,n= ∀∈ −                                            (2) 
where N(0,1/n) is a random number with a mean equal to 0 and a standard deviation 1/n.  

Over conceptual vectors there is defined a binary operation „convolution“, which 
assigns to a couple of vectors a third vector, : n n nR R R⊗ × → , or  

⊗=c a b                                                                  (3) 
The components of the resulting vector ( )0 1 1nc c ,c ,...,c −=  are determined by a formula 

[ ] ( )
1

0

0 1 1
n

i j i j
j

c a b i , ,...,n
−

−
=

= = −∑                                               (4) 

where the index in the square brackets, [k], is defined using a modulo n operation as follows1  
k k mod n′ =                                                             (5a) 

[ ]
( )
( )

0

0

k if k
k

n k if k

′ ′ ≥⎧⎪= ⎨
′ ′+ <⎪⎩

                                                  (5b) 

Since it is one of the basic notions of the holographic representation, we shall give a table of 
values [k] for –4≤k≤4 and n=4. 
  
 
 
 
 
 
 
 
 
 
 

                                                 
1 A standard definition of an arithmetic operation k modulo n is determined as a remainder after integer division 
by a number n. It is necessary to comment, that the used definition of the operation k modulo n is different from 
this standard definition for negative numbers k. While the standard definition provides a result with a negative 
value, if the result is negative in our definition, than it is transformed by adding n to it.   

k k’ [k] 
-4 0 0 
-3 -3 1 
-2 -2 2 
-1 -1 3 
0 0 0 
1 1 1 
2 2 2 
3 3 3 
4 0 0 
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Figure 2. Convolution of two vectors a and b for n=3 (see (6)). 
 
A convolution of two vectors a and b for n=3 has the following form (see fig. 2) 

0 0 0 1 2 2 1

1 0 1 1 0 2 2

2 0 2 1 1 2 0

c a b a b a b
c a b a b a b
c a b a b a b

= + +
= + +
= + +

                                                    (6) 

The convolution satisfies the following properties: 
 

(1) commutativity, ⊗ ⊗=a b b a  
(2) associativity, ( ) ( )⊗ ⊗ ⊗ ⊗=c b ca b a  

(3) distributiveness, ( ) ( ) ( )⊗ α + β α ⊗ β ⊗= +b c b ca a a  

(4) an existence of a unit vector, ( )( )1 0 0= , ,...,⊗ =a a1 1  
 
The convolution can be also expressed by a circulant matrix [1] 

( )

( )
0 0 0 1 2 2 1 0 0 2 1 0

1 0 1 1 0 2 2 1 1 0 2 1

2 2 1 0 22 0 2 1 1 2 0

circ a

c a b a b a b c a a a b
c a b a b a b c a a a b circ

c a a a bc a b a b a b

= + + ⎫ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎪ ⎜ ⎟ ⎜ ⎟⎜ ⎟= + + ⇒ = ⇒ ⊗ =⎬ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎪ ⎜ ⎟ ⎜ ⎟⎜ ⎟= + + ⎝ ⎠ ⎝ ⎠⎝ ⎠⎭

a b a b

1442443

             (7) 

This specific example is generalized for an arbitrary dimension n as follows   

( ) ( )

0 1 2 1

1 0 3 2

2 3 0 1

1 2 1 0

n

n n n

n n

a a .. a a
a a .. a a

circ circ .. .. .. .. ..
a a .. a a
a a .. a a

−

− − −

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⊗ ⇔ = ⇔ =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

c a b c a b a               (8) 

where the general circulant matrix has its elements  
( )( ) [ ]i jij

circ a a −=                                                        (9) 

The circulant matrix has the following properties 
( ) ( ) ( )circ circ circ⊗ =a b a b                                           (10) 

and since the convolution is a commutative operation, then circulant matrices are mutually 
commutative 

( ) ( ) ( ) ( )circ circ circ circ=a b b a                                       (11) 
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Let X is an inverse matrix to a circulant matrix circ(a) 
( ) ( )circ circ= =X a a X E                                             (12) 

Its alternative form is 
  ( )1circ−=X a                                                          (13) 

Let a-1 be an inverse vector to the vector a, ( )1 1 0 0 0, ,..., ,− ⊗ = =a a 1 , then assuming that the 

circulant matrix is regular, ( ) 0circ ≠a , it follows 

( ) ( )1 1circ circ− −=a a                                                     (14) 
 Let us define a unary operation involution (see fig. 3) 

( ) : n nR R∗ →                                                         (15) 
by a formula 

[ ] [ ] [ ] [ ]( )0 1 2 1n na ,a ,...,a ,a∗
− − + − += =b a                                           (16) 

 

( , , ,..., , )a a a a a0 1 2 -2 -1n n
*=( , , ,..., , )a a a a a0 2 1n n-1 -2  

 
Figure 3. Visualization of the unary operation of involution. 
 

The operation of involution satisfies the equations 
( )∗ ∗ ∗+ = +a b a b                                                           (17a) 

( )∗ ∗ ∗⊗ = ⊗a b a b                                                          (17b) 

( ) ( )*⊗ ⋅ = ⋅ ⊗ca b a b c                                                      (17c) 
∗∗ =a a                                                                   (17d) 

( ) ( )Tcirc a circ a∗ =                                                       (17e) 
 

index
20 40 60 80

0,000

0,002

0,998

1 0,0 0

99

...
...

va
lu

es
 o

f r
en

or
m

al
iz

ed
co

ef
fic

ie
nt

s

 
Figure 4. A histogram plot of single components of ∗ ⊗c c , where c is randomly generated conceptual vector for 
n=100. We see from this plot that an absolute value of the „first“ component ( )

0

∗ ⊗c c  is greater about two-three 

orders than absolute values of remaining components ( )
i

∗ ⊗c c , for 1i ≥ . It means that the product ∗ ⊗c c  after 

a proper normalization plays approximately a role of unit vector ( ) ( ) ( )1 1 0 0 0, ,..., ,− ∗⋅ ⊗ =c c c c 1 .  
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 We prove that an involution c* is approximately equal to an inverse vector c-1, 
∗ ⊗ ≈c c 1 . Let us study the i-th  component of convolution ∗ ⊗c c  

( ) [ ] [ ] [ ]

( )

[ ] [ ] ( )

1 1

0 0

1

0

for 0

for 0

n n
*
k i k k i ki

k k

n

k i k
k

c c c c

i

c c i

− −
∗

− − −
= =

−

− −
=

⊗ = =

⋅ =⎧
⎪= ⎨

>⎪
⎩

∑ ∑

∑

c c

c c                                        (18) 

The zero-component of convolution ( )
0

∗ ⊗c c  corresponds to a scalar product ⋅c c  expressed 

as a sum of positive “diagonal” terms 2
ic , whereas other components ( )

i

∗ ⊗c c , for 1i ≥ , are 

determined by sums of  “nondiagonal” terms i jc c  with fully random signs. This observation 

has an important consequence that ( )
0

∗ ⊗c c  is much greater than absolute values of 

remaining components ( )
i

∗ ⊗c c , for 1i ≥ , then we proved that ∗ ⊗ ≈c c 1 , which was to be 

proved (see Fig. 4). 
 One of the basic aspects of the holographic representation is the possibility of 
reconstruction of the original components, which were used for construction of convolution of 
two vectors. This possibility is very important, since it allows us to decode the original 
information from the complex conceptual vectors. Reconstruction of x from c⊗x is based on 
the above proved formula ∗ ⊗ ≈c c 1  

( ) ( ) 1 1∗ ∗= ⊗ ⊗ = ⊗ ⊗ ⊗ =
⋅ ⋅

x c c x c c x x x
c c c c

% 1                          (19) 

according to which the convolution c* with the vector c⊗x produces the vector x% , which is 
similar to the original vector x, ≈x x% . This result can be reformulated in the form  

( )

0

1 1

1 1

1

n n

x
x

.............
x − −

⎛ ⎞
⎜ ⎟+ η⎜ ⎟= = +
⎜ ⎟⋅
⎜ ⎟⎜ ⎟+ η⎝ ⎠

x x
c c

% η                                             (20) 

where η is interpreted as a random noise with a normal distribution with a zero mean and a 
standard deviation much smaller than x.  

The overlap of the resulting vector x%  with the original vector x is determined from 
a scalar product by 

( )1 1overlap , ⋅
− ≤ = ≤

%
%

%

x xx x
x x

                                                (21)   

where the inequalities result directly from the Schwartz’s inequality from linear algebra. The 
more this value is close to its maximum value, the more similar2 are the vectors x%  and x.  
 In the fig. 5 a histogram of overlaps is shown for the product ⊗c x , containing 
a couple of randomly generated different conceptual vectors c and x of the dimension n=1000. 
It is evident from the figure, that the most common overlap between ∗= ⊗ ⊗x c c x%  and x is 
around 0.7, from which follows, that the vectors  x%  and x are similar, ≈x x% .  

 

                                                 
2 In the case, that the overlap value approaches -1, then the vectors x%  and x are also similar, even though they 
have opposite orientation (they are anticolinear). 
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Figure 5. A histogram of overlaps between vectors x%  and x (of dimensions n=1000) has highest frequency 
around 0.7, from which follows, that the vectors  x%  and x are similar. 
 
 Let’s turn our attention to the second possibility of the verification of the formula 
(20b) with the application of the approach called the „superposition memory“. Let us have 
a set containing p+q randomly generated conceptual vectors, { }1 2 1p p p qX , ,..., , ,...,+ += x x x x x , 
while p<q. Using the first p vectors from X allows us to define a memory vector t as their sum 

1

p

i
i=

= ∑t x                                                                 (22) 
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Figure 6. Illustration of the superposition memory for the first 7 vectors of the set X, which contains 14 
randomly generated conceptual vectors of the dimension n=1000. The threshold value ϑ can be in this case set to 
0.2. 
 
The vector t represents a superposition memory, which by a simple additive way contains 
vector from the set X. The decision, whether some vector X∈x  is contained in t must be 
based on the value of the overlap (21) 

   ( )overlap , ⋅
=

x tx t
x t

                                                        (23) 

If this value is greater than a predefined threshold value, ( )overlap , ≥ ϑx t , then the vector x 

is included in the superposition memory t, in the opposite case, if ( )overlap , < ϑx t , then the 
vector x is not included in t (see fig. 6). 
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 In the above illustrative example (see fig. 6) we used such a method for  determination 
of conceptual vectors, which can „appear“ in some other different complex conceptual vector 
(which can be the result of complicated previous calculations – transformations). The used 
method is called „clean-up“ and it is specified as follows: Let us have a set of vectors  

{ }1 2 nX , ,...,= x x x  and some vector t. We face the decision, whether the memory vector 
(trace) t contains a superposition component, which is similar (or which is not similar) to 
some vector from the set X.  This problem can be solved by calculating so called overlap (23), 
formally 

( )( )
( )( )

yes overlap ,

no overlap ,

⎧ ≥ ϑ⎪≈ = ⎨
< ϑ⎪⎩

x t
x t

x t
                                           (24) 

where ϑ is a chosen threshold value of acceptance of the size of the overlap as the positive 
answer. The result of this cleaning-up process is a subset of vectors  

( ) { }X X ; X= ∈ ≈ ⊆t x x t                                                  (25) 
 We can put the question also in a rather different form, which is, whether the memory 
vector t is similar to any of the vectors from the set X? The answer to this more general 
question shall be decided from the maximum value of the overlap 

( ) ( )
x X

overlap , X max overlap ,
∈

=t t x                                           (26) 

 Then we can rewrite (24) in the form 
( )( )
( )( )

yes overlap , X
X

no overlap , X

⎧ ≥ ϑ⎪≈ = ⎨
< ϑ⎪⎩

x
x

x
                                        (27) 

 
  
3. Associative memory 
The construction of the associative memory belongs to the main results of the holographic 
reduced representation, which can be further generalized by so called chunking. Let us have 
a set of conceptual vectors { }1 2 nX , ,...,= x x x  and a training set { }; 1 2train i iA i , ,...,m= =c x , 
which contains m<n associated couples of conceptual vectors i ic x , where ci is the input to 
the associative memory (cue) and xi is the output from the memory. Let’s create a memory 
vector t representing the associative memory created from the training set Atrain 

1 1
1

m

m m i i
i

...
=

= ⊗ + + ⊗ = ⊗∑t c x c x c x                                         (28) 

Let us suppose, that we know in advance only the inputs ci to the associative memory, 
we do not know the possible outputs from the set { }1 2train mX , ,...,= x x x . The response of the 
associative memory to the input - clue ci is determined by the process of „clearing-up“ 
represented by the formula (27). In the first step we shall calculate the vector i i

∗= ⊗x c t% , then 
by a process based on the maximum value of the overlap we shall find whether  i i X≈ ∈x x%   

( ) ( )
train

i ix X
overlap ,X max overlap ,

∈
=% %x x x                                        (29)   

The associative memory will be illustrated by the following two examples. 
 
1st example  
This example uses only the training set { }; 1 2train i iA i , ,...,m= =c x , which is randomly 
generated for m=8, while the dimension of conceptual vectors is n=1000. For each associated 
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couple i ic x  there are calculated i i i= ⊗t c x . The values of ( )i i joverlap ,∗ ⊗c t x  are presented 
in the table 

 
 1 2 3 4 5 6 7 8 

1 0.71703 -0.01820 0.01452 0.02776 -0.01488 -0.01922 -0.02442 0.01358 
2 -0.03998 0.73804 0.01510 0.01430 0.00276 0.02346 -0.00545 -0.01626 
3 -0.02757 -0.01736 0.64667 0.00474 -0.11580 -0.00812 0.01476 0.00379 
4 0.00785 0.00374 -0.01899 0.68728 -0.15340 0.00005 -0.00561 0.00136 
5 -0.00466 0.00426 -0.01831 -0.00827 0.70767 0.04175 -0.03384 -0.00668 
6 -0.01467 0.02522 -0.01403 -0.01316 -0.03000 0.71444 0.00078 -0.00526 
7 0.02966 0.00892 -0.00301 -0.00358 0.01285 0.00971 0.70790 0.01816 
8 -0.00344 -0.01080 0.00843 -0.01871 0.00324 -0.02629 0.00851 0.58957 

 
It is evident from the table, that the overlaps are sufficiently great just for diagonal values, 
while the non-diagonal overlaps are smaller by an order of magnitude. We can therefore 
unambiguously decide from the overlap, whether i i i

∗ ⊗ ≈c t x  is associated with the cue ci. 
 
2nd example 
In this illustrative example we shall use the training set { }train i iA = c x , generated for m=10 
associated couples – vectors of dimension n=1000. This memory is represented by a memory 
vector 1 1 m m...= ⊗ + + ⊗t c x c x .  The following table shows 20 experiments of „clean up“, 
where we used with a 50% probability as an associative entry a vector ci from the training set 
or a randomly generated conceptual vector. The table contains maximal values of overlaps 
(29), by which we can unambiguously determine, whether the used input has an associated 
counterpart in the training set.    
 

# max. overlap Input index  index of output with 
 max.overlap 

1 0.311 6 6 
2 0.047 rand. gener. nonexistent 
3 0.383 5 5 
4 0.373 10 10 
5 0.316 3 3 
6 0.397 4 4 
7 0.074 rand. gener. nonexistent 
8 0.065 rand. gener. nonexistent 
9 0.069 rand. gener. nonexistent 

10 0.039 rand. gener. nonexistent 
11 0.344 7 7 
12 0.402 8 8 
13 0.032 rand. gener. nonexistent 
14 0.073 rand. gener. nonexistent 
15 0.017 rand. gener. nonexistent 
16 0.004 rand. gener. nonexistent 
17 0.033 rand. gener. nonexistent 
18 0.056 rand. gener. nonexistent 
19 0.373 10 10 
20 0.037 rand. gener. nonexistent 

 
It follows from the table, that the associative memory with the clean up process is 
unambiguously identifying, the values of a maximum overlap for conceptual vectors well 
specify the existence (or nonexistence) of corresponding associative outputs.      
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Figure 7. Illustration of analysis of a combination of superposition memory and associative memory. In the first 
step we carried out the process of clean up, by which we found, that the memory contains only two items –
atomic vectors a and b, which in the next step serve as an input for further analysis of the associative memory, 
where we found as outputs the vectors c and d. During the clean up process we moreover verified with a negative 
result, whether the superposition memory contains also further vectors c,d,...,i,j. With a great probability we can 
therefore decide, that the memory vector t is the combination of the superposition and associative memory 

= + + ⊗ + ⊗t a b a c b d . The dimension of the used vectors is n=1000.   
 
Combination of superposition memory and associative memory 
We shall show, that also a combination of can be superposition and associative memory 
reliably analyzed, which will prove in our further applications as an advantageous feature of 
the holographic representation. Let us presume, that we have 10 conceptual vectors 
a,b,c,d,...,i,j, and from the first four we shall construct a combination of a superposition and 
associative memory as follows 

= + + ⊗ + ⊗t a b a c b d                                                      (30) 
By the clean up procedure we can find out, that the vector t contains as its parts the vectors 
a and b, which we shall in the following step remove from the vector t   

′ = − − = ⊗ + ⊗t t a b a c b d                                                    (31) 
From the remaining superposition part we can find out by the application of the analysis (as 
from the associative memory) that it contains two couples a c  and b d , see fig. 7.  

 
 
4. Sequence of symbols 
The construction of the associative memory does not allow storing of structured data, the aim 
of this chapter is to show, that a holographic distributed representation is able to process 
a linear sequence of symbols, which are represented by a sequence of conceptual vectors.  
 To concretize our thoughts, let us study a sequence of 6 conceptual vectors of the 
dimension n=1000 

{ }sequence = → → → → →a b c d e f                                      (32) 
For these vectors we shall construct a memory vector 

0 = + ⊗ + ⊗ ⊗ + ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ ⊗ ⊗t a a b a b c a b c d a b c d e a b c d e f     (33) 
We know, that this vector contains the sequence of vectors coded by (33), but we do not 
know, which vectors these are and in what order. We shall show, that by the clean up 
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procedure we can from the vector t0 reconstruct the original sequence (32) step by step using 
the following procedure: 
1. step: ( )0clean _ up=a t ,  1 0:= −t t a ,  

             1 1:= ⊗*t a t% ,  
2. step: ( )1clean _ up=b t% ,  2 1:= − ⊗t t a b ,  

             ( )2 2: ∗= ⊗ ⊗t a b t% ,   

3. step: ( )2clean _ up=c t% , 3 2:= − ⊗ ⊗t t a b c ,  

              ( )3 1 2 3 3: ∗= ⊗ ⊗ ⊗t y y y t% ,     

4. step: ( )3clean _ up=d t% ,  4 3:= − ⊗ ⊗ ⊗t t a b c d ,  

              ( )4 4: ∗= ⊗ ⊗ ⊗ ⊗t a b c d t% , 

5. step: ( )4clean _ up=e t% , 5 4:= − ⊗ ⊗ ⊗ ⊗t t a b c d e , 

              ( )5 5: ∗= ⊗ ⊗ ⊗ ⊗ ⊗t a b c d e t% ,   

6. step: ( )5clean _ up=f t% . 
 
 The function clean_up(⋅) carries out the clean up process for the given vector t with 
respect to the set of vectors { }X , ,..., , , ,...= a b f g h . The single steps of the reconstruction of 
the sequence of conceptual vectors – symbols are shown in the fig. 8, from which follows, 
that the process of the reconstruction of a sequence of symbols rather quickly degrades, 
already for the sixth vector the overlap is smaller than 0.2. 
 The sequence of symbols can be coded also by an associative memory, where the 
vector of the entry ci specifies ith position of the given symbol. The above mentioned 
illustrative example is represented by a memory vector 

1 2 3 4 5 6= ⊗ + ⊗ + ⊗ + ⊗ + ⊗ + ⊗t c a c b c c c d c e c f                               (34)  
The recognition of this sequence consists in the search of the associate vector to the input 
vector ci , by application of the clean up process there can be constructed a „training set“ 

{ }1 2 3 4 5 6trainA , , , , ,= c a c b c c c d c e c f                                        (35)  
which unambiguously specifies the sequence of vectors. The advantage of such a technique is 
in the accuracy of recognition, which does not degrade so fast as during the original procedure 
based on the memory vector (33). 
 
 

a d e f
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b c

 
 

Figure 8. The overlap for single vectors with a sequence from (30), which were obtained by the reconstruction 
from the vector t0. It is apparent from the figure, that a degradation of reconstruction relatively quickly appears, 
already the sixths vector f  is reconstructed with a probability smaller than 0.20. 
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 The associative approach to the implementation of the memory for a sequence of 
symbols (represented by atomic vectors a, b,   ) can be easily modified into the form of so 
called „stack memory“. Associative entries ci are determined as follows   

( )1 2i
i i , ,...= =c p                                                      (36) 

where pi  is the ith (convolutive) power of randomly generated conceptual vector p, 
1i i−= ⊗p p p . Then the memory vector (32) has a form 

2 3
1 2 3

n
n...= ⊗ + ⊗ + ⊗ + + ⊗t p x p x p x p x                               (37) 

where xi are single items from memory {a, b,...}. Such an interpreted associative memory for 
the sequence of symbols is called the „stack memory“, with the help of power entries pi we 
can easily change their contents, see fig. 9. Over this memory we can define three different 
operations, by which we can change its contents: 
  
 

push( )t top( )t

t

pop( )t  
Figure 9. Three possible operators for the stack memory represented by a vector.   
 
(1) ( )push , = ⊗ + ⊗t x p x p t , the new item  x is placed to the top of the stack. 

(2) ( ) ( )top clean _ up ∗= ⊗t p t , recognizes the top item in the stack. 

(3) ( ) ( )1pop top−= ⊗ −t p t t , removes the top item from the stack.  
 
 The most problematic is the third operation, which removes the top item from the 
stack. The correct implementation needs an application of the exact inverse vector p-1, the 
approximation of this inverse vector by involution, 1− ∗p p , leads to a fast degradation of the 
stack memory.   

 
 
5. Memory chunks 
Memory chunks help to overcome the problems with a degradation of memory for a sequence 
of symbols (see chap. 4). Let us have a set of conceptual vectors { }S , ,..., , ,...= a b k l , this set 
shall be divided into disjoint subsets - chunks 

( )1 2 3 4 prei jS S S S S ... S S , i j= ∪ ∪ ∪ ∪ ∪ = ∅ ≠                     (38) 

Let’s study a set { }S a,b,c,d ,e, f ,g ,h= , its decomposition into chunks looks as follows (see 
fig. 10) 



13 

{ }1S a,b,c= , { }2S d ,e= , { }3S f= , and { }4S g,h=                        (39) 
 

a

b

c

f

g

h

d
e

i

s
s1

s2
s3

s4

 
 
Figure 10. Illustration of the decomposition of the set S into disjoint chunks, see (38). 

 
 Chunks are represented by a vector, which represents a sequence of chunks 
{ }1 2 3 3→ → →s s s s  

1 1 2 1 2 3 1 2 3 4= + ⊗ + ⊗ ⊗ + ⊗ ⊗ ⊗t s s s s s s s s s s                              (40b) 
while single chunks are defined by corresponding sequences of vectors (see fig. 11) 

1 = + ⊗ + ⊗ ⊗s a a b a b c                                                (40c) 

2 = + ⊗s d d e                                                         (40d) 

3 =s f                                                                (40e) 

4 = + ⊗s g g h                                                          (40f) 
 The processing of the memory chunks can be divided into two steps: 
 
1. step  – by a clean up process we shall identify chunks contained in t (we presume, that the 
clean up process has the set { }1 2 nX , ,...,= x x x  from the end of the 2nd chapter, where this 
process was specified, enlarged also by chunks 1 2 3 4, , ,s s s s , i.e. in our illustrative example 

{ }1 2 3 4X , , , , , , , , , , ,= a b c d e f g h s s s s  ).   
2. step – the identified chunks are further processed by the clean up technique. 
 

s1 s2 s3 s4

a cb ed f g h

1st stage

2nd stage

t

 
Figure 11. The chunking of 8 conceptual vectors onto 4 chunks. In the 1st stage the clean up process identifies 
the chunks, which are then in the 2nd step further analyzed up to vectors describing elementary concepts. 
 



14 

1 2 3 4 5 6 7 8 9 10 11 12
0,0
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Figure 12. The representation of the two-step clean up process, where in the first step the chunks are identified, 
while in the second step there are identified the vectors corresponding to atomic concepts from the already 
identified chunks.  
 
 The result of the two-step process of clean up is shown in the fig. 11. It is evident from 
this figure, that in the case of a long sequence of conceptual vectors a fast degradation during 
the clean up process can be partially overcome by the chunking of concepts onto chunks, 
which are at the highest level separately coded. 

 

s1 s2 s3 s4

a cb ed f g h

s5

i kj

s12 s345

t s= 12345

1st step

2nd step

3rd step
 

Figure 13. Illustration of chunks of higher order, where some of the used chunks are composed from simpler 
chunks. 
 
 The chunking method can be generalized, so that the chunks of higher order are 
created, i.e. chunks composed of chunks, see fig. 12, where single chunks are defined as 
follows (the used vectors of concepts a, b, ..., c have the dimension n=1000) 

1 = + ⊗ + ⊗ ⊗s a a b a b c                                                       (41a) 

2 = + ⊗s d d e                                                               (41b) 

3 =s f                                                                     (41c) 

4 = + ⊗s g g h                                                               (41d) 

5 = + ⊗ + ⊗ ⊗s i i j i j k                                                        (41e) 

12 1 1 2= + ⊗s s s s                                                               (41f) 

345 3 3 4 3 4 5= + ⊗ + ⊗ ⊗s s s s s s s                                                  (41g) 
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12345 12 12 345= = + ⊗t s s s s                                                       (41h) 
The process of clean up of the chunked memory trace t specified by (41h) is shown in the fig. 
13. In the 1st step we analyze the trace t, its analysis tells us, that the trace t contains two 
chunks s12 a s345. In the second step we analyze chunks from the previous first step, and we 
recognize their contents as chunks s1, s2,..., s5. In the last third step we analyze chunks from 
the previous step, which already contain atomic conceptual vectors a, b, ..., k. The overlaps of 
the resulting vectors in the clean up process are shown at fig. 14.  
 

0.0

0.2

0.4

0.6

0.8

1.0

ov
er

la
p

s12 s345 s1 s2 s3 s4 s5 a b c d e f g h i j k
s12 s345 s1 s2 s3 s4 s5s12345  

 
Figure 14. Illustration of a 3-step clean up of the chunked trace t specified by the formula (41h). In the first step 
the trace t is analyzed, it is found, that it contains two chunks s12 and s345. In the second step the two chunks from 
the previous step are analyzed, and found to contain chunks s1, s2, ..., s5. In the last third step the 5 chunks 
identified in the previous step are successively analyzed. They contain the vectors a, b, ..., k. 
 
 The presented illustrative examples show, that the memory chunk approach represents 
an effective way to overcome fast degradation of the original version of a successive analysis 
of the vector (33). By combining of several conceptual vectors into a chunk, we shall gain 
a simple opportunity to extend our ability to analyze correctly greater sets of conceptual 
vectors. The chunking process can have several hierarchic levels, which removes the limits 
from our ability to store and recall conceptual vectors. 
 
 
6. Coding of relations 
Holographic reduced representation can serve also as a suitable means for encoding relations 
(predicates). Let us study a binary relation P(x,y), when the Pascal code is used, this relation 
is formally specified by the head  

( )1 2 3: ; : :function P x type y type type                                              (42) 
The single arguments of the relation are specified by the types type1 and type2, which specify 
the domain, over which are these variables defined; similarly also the relation P itself is 
understood as a function, which domain of values is specified by the type type3. In many cases 
the domain of variables and also the domain of the relation itself are equal to each other; 
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therefore their specifications can be omitted, which substantially reduces the holographic 
representation of relations. The reduced form of relation (42) looks as follows  

( );function P x y                                                           (43) 
where we know in advance the type of variables x,  y, and also the type of the relation P itself. 
The holographic representation of the relation (42) can have the following form 

( ) ( )( )
1 2

3 1 1 2 2

= + + +

⊗ + ⊗ + + ⊗ +

t P variable variable

P type variable x type variable y type
                  (44) 

Their decoding is carried out step-by-step. In the first step we use the clean up procedure to 
recognize the name (identifier) of the relation P and also the names (identifiers) of its 
variables x and y. In the second step we identify the type type3 of the relation P, in the last, 
third step we use previous results to identify variables x, y and also their types type1 and type2. 
In many cases the representation of the relation P(x,y) is satisfactory in the following 
simplified form (see (43)) 

1 2= + ⊗ + ⊗t P variable x variable y                                               (45) 
 The chosen method of the holographic representation of relation can be easily 
generalized also for more complex (higher order) relations, where the variables are predicates 
as well, e.g.  ( )( )P x,Q y,z , where the „inner“ predicate Q is characterized  by 

( )3 4 5: ; : :function Q y type z type type                                                 (46) 

In order to create a higher order relation ( )( )P x,Q y,z , we must presume a type compatibility 
of the second variable of the relation P and of the type of relation  Q, i.e. type2=type4. In the 
simplified approach, where all the types are the same, it is not necessary to distinguish the 
types of single variables and the relations themselves. A simplified holographic representation 
of relation (46) has the following form 

1 2′ = + ⊗ + ⊗t Q variable y variable z                                           (47) 
By exchanging the representation (47) for the variable y in the representation (45) we get the 
following resulting representation of the higher order relation ( )( )P x,Q y,z  
 

( )2 3 4

2

2 3 2 4

1

1

= + ⊗ + ⊗ + ⊗ + ⊗

= + ⊗ + ⊗ +
⊗ ⊗ + ⊗ ⊗

t P variable x variable Q variable y variable z
P variable x variable Q
variable variable y variable variable z

               (48) 

 
 

1st illustrative example –a similarity between geometric figures 
In the figure 15 there are presented 48=6×8 geometric patterns, which contain either in 
horizontal or in vertical settings two objects, which moreover can be of two sizes, small and 
big. Let us mark holographic representations of corresponding atomic concepts as follows: 

Objects: tr (triangle), sq (square), ci(circle), st (star) 
Unary relations: sm (small), lg (large) 
Binary relations: hor (horizontal), ver (vertical) 
Variables: ver_var1 (1st variable for binary relation ver), ver_var1 (2nd variable 
                   for binary relation ver), hor_ver1 (1st variable for binary relation  
                   hor),  hor_ver2 (2nd variable for binary relation hor) 
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Single figures from z fig. 15 are characterized by relations given in the following table.  
 

 row specification 
1 ver(lg(x),lg(y)) 
2 hor(lg(x),lg(y)) 
3 hor(sm(x),lg(y)) and  hor(lg(x),sm(y))  
4 ver(sm(x),lg(y)) and  ver(lg(x),sm(y)) 
5 ver(sm(x),sm(y)) 
6 hor(sm(x),sm(y)) 

 

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 19 20 21 22 23 2418

33 35 36 37 38 39 4034

25 27 2826 29 30 31 32

41 43 44 45 46 47 4842  
 
Figure 15. A set of 48 similar figures, which contain two objects, placed either next to each other, or above each 
other and the objects are either small or big. Every column contains a couple of similar objects, which differ only 
by their placement or size. 
 
 Holographic representations of single cases from this table have the following form 
(compare with the equation (45)). 

1 2

2 2

2
3

2

2
4

, , 1

, , 1

1
, ,

1

1
, ,

1

_ _

_ _

_ _

_ _

_ _

_

= + ⊗ ⊗ + ⊗ ⊗

= + ⊗ ⊗ + ⊗ ⊗

⎧ + ⊗ ⊗ + ⊗ ⊗⎪= ⎨
+ ⊗ ⊗ + ⊗ ⊗⎪⎩
+ ⊗ ⊗ + ⊗ ⊗

=
+

x y

x y

x y

x y

t ver ver var lg x ver var lg y

t hor hor var lg x hor var lg y

ver ver var lg x ver var sm y
t

ver ver var sm x ver var lg y

hor hor var lg x hor var sm y
t

hor hor var 2_

⎧⎪
⎨

⊗ ⊗ + ⊗ ⊗⎪⎩ sm x hor var lg y

                         (49) 

5 2

6 2

, , 1

, , 1

_ _

_ _

= + ⊗ ⊗ + ⊗ ⊗

= + ⊗ ⊗ + ⊗ ⊗
x y

x y

t ver ver var sm x ver var sm y

t hor hor var sm x hor var sm y
 

where x and y are holographic representations of single objects (tr, sq, ci, st) and the bracket 
u  indicates, that the vector u is normalized. The similarity between single figures is 

determined by the overlap of their holographic representations  
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( ) ( )similarity X , X overlap ,′ ′= t t                                            (50) 
 

0.58

0.52

0.16

0.16

0.52
0.54

0.48

0.13
0.42

0.47

0.15

0.12

0.45
0.54

0.43

0.09

 
 
Figure 16. Illustrative presentation of similar figures for two chosen figures 1 and 48 (see fig. 16). Single arrows 
are marked by the overlap between the figures calculated by formula (50). 

 
The obtained results are shown in the fig. 16. The dominant feature controlling similarity 
value is the horizontal or vertical arrangement of objects. The overlap (i.e. also the similarity) 
between two figures, which have different arrangement is usually smaller than 0.1.  
 In general, holographic reduced representation allows fairly simple determination of 
similarity of objects specified by a predicate structure (42) or by its generalization through 
further nested predicates (see (48)). This possibility opens new horizons on future 
developments in fundamental methods of search for similar objects or analogies, which are 
considered very difficult problems for artificial intelligence requiring special symbolic 
techniques [7].   
 
 
2nd illustrative example – similarity between binary numbers 
We shall study similarity between binary numbers of the length 3, which are represented by a 
sequence ( ) { }3

1 2 3 0 1,α α α ∈ . This number can be understood as an ordered triple of binary 
symbols, which are in the distributed representation represented as follows (see (33)) 

( ) 1 1 2 1 2 31 2 3 α α α α α αα α α = + ⊗ + ⊗ ⊗t t t t t t t                                      (51a) 

( )
( )

0

1

for

forα

α =⎧⎪= ⎨
α =⎪⎩

zero
t

one
                                              (51b) 

where zero and one are distributed representations of numbers ‘0’ or ‘1’. For example, 
a binary number (101) is represented as follows 

( )101 = + ⊗ + ⊗ ⊗t one one zero one zero one                         (52) 
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Figure 17. Graphic representation of similarity between distributed representations of binary numbers, the size 
of overlap between couples is proportional to the brightness of the corresponding square area (the areas on the 
skew diagonal are the brightest ones). The darkest areas are in the bottom lower corner and in the left upper 
corner. It corresponds to the fact that these areas are assigned to representations of maximally distant couples of 
numbers. 
 
The similarity between single representations is reflected also by a similarity between 
corresponding binary numbers; the representation of two close binary numbers is inversely 
proportional to their distance (e.g. to the absolute value of their difference).  In the following 
table there are given the similarities between representations of binary numbers, which were 
calculated from their overlap (23).  
 

000 001 010 011 100 101 110 111 
000 1.00 0.74 0.50 0.46 0.21 0.16 0.14 0.11 
001 0.74 1.00 0.71 0.42 0.45 0.15 0.12 0.15 
010 0.50 0.71 1.00 0.75 0.70 0.43 0.09 0.08 
011 0.46 0.42 0.75 1.00 0.46 0.70 0.37 0.04 
100 0.21 0.45 0.70 0.46 1.00 0.74 0.43 0.39 
101 0.16 0.15 0.43 0.70 0.74 1.00 0.70 0.35 
110 0.14 0.12 0.09 0.37 0.43 0.70 1.00 0.69 
111 0.11 0.15 0.08 0.04 0.39 0.35 0.69 1.00 

 
The maximum similarity is between couples of representations assigned to two neighboring 
integers, minimum similarity of two representations occurs, if the corresponding numbers 
have a maximum distance, which equals 7. These values from the table are graphically 
represented in the fig. 17.  
 This simple illustrative example shows, that in the framework of the holographic 
distributed representation one can use (at least potentially) associative representations of the 
type (28), where associative cues correspond to numbers. It means that in this distributed 
approach there exists a possibility of associative simulation of an arbitrary function, which 
substantially increases the potential of the method to be used universally. 
 
 
7. Reasoning by modus ponens and modus tollens 
Simulation of reasoning processes (inference) belongs to the basic problems, which are 
repeatedly solved in artificial intelligence and cognitive science [15]. Fodor‘s critique of 
connectionism [19] was based precisely on the brash conclusion, that artificial neural 
networks are not able to simulate higher cognitive activities, which are purported to be an 
exclusive domain of the classical symbolic approach. This Fodor’s opinion was proved to be 
incorrect, further development of theory of neural networks showed, that connectionism is 
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a universal computational tool, which does not have limits of applicability, it does not have 
domains of inapplicability, which would be forbidden for it. Of course, it can transpire, that in 
some domains its application is extremely cumbersome and exceedingly complicated, that 
there exist other approaches, which in the given domain provide substantially simpler and 
direct solution, than the one provided by neural networks. 
 In this chapter we shall show a possibility of representation of two basic modes of 
deductive reasoning of modal logic,  

p q
p

q

⇒

         and           
p q
q

p

⇒

                                               (53) 

which are called modus ponens resp. modus tollens. These modes of reasoning are equivalent 
to the following tautologies of the predicate logic 

( )( )p q p q⇒ ∧ ⇒                                                     (54a) 

( )( )p q q p⇒ ∧ ⇒                                                     (54b) 

Implication ′⇒′ can be understood as a binary relation, which can be in holographic 
distribution represented like this (see formula (47)) 

1 2p q⇒ = ⊗ + ⊗ + ⊗t op impl var p var q                                        (55) 
which contains a sum of three parts, the first part specifies the type of relation (implication), 
the second and third parts specify the first (antecedent) resp. the second (consequent) variable 
of the relation of implication. This conceptual vector representing relation of implication can 
be transformed as follows  

p q p q⇒ ⇒= ⊗t t T%                                                      (56a) 
where 

1 2
∗ ∗ ∗ ∗ ∗ ∗= ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗T var p p q var q q p                             (56b) 

The transformed representation of implication is represented by a sum of two associated 
couples  

p q
∗ ∗

⇒ ≈ ⊗ + ⊗t p q q p%                                                    (57) 
which gives the holographic representation of the rules modus ponens and modus tollens  

p q⇒⊗ ≈p t q%                                                          (58a) 

p q⇒⊗ ≈q t p%                                                          (58b) 
The first formula (58a) can be understood as a holographic representation of modus ponens 
(see (53) and (54a)), while the other formula is a holographic representation of modus tollens 
(see (53) and (54b)). 
 A similar result can be obtained also by an alternative approach, which is based on the 
disjunctive form of implication 

( ) ( )p q p q⇒ ≡ ∨                                                        (59) 
The distributed representation of implication in this alternative form can be expressed by 

1 2p q∨ = ⊗ + ⊗ + ⊗t op disj var p var q                                       (60) 
By a transformation of this representation we can get (see (55))  

p q p q
∗ ∗

∨ ∨= ⊗ ≈ ⊗ + ⊗t t T p q q p%                                      (61a) 
where 

1 2
∗ ∗ ∗ ∗= +T var q var p                                                      (61a) 
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This transformation is much simpler than the one in the previous case (56b). The rules modus 
ponens and modus tollens are now realized by formulas similar to (58a-b). Moreover, we get 
also the following two „rules“  

p q
∗ ∗

∨⊗ ≈q t p%                                                             (62a) 

p q
∗ ∗

∨⊗ ≈p t q%                                                             (62b) 
which remind us of the well known fallacies  

p q
q

p

⇒

   a    
p q
p

q

⇒

                                                         (63) 

that are known as „affirming the consequent“ resp. „denying the antecedent“. This fault is 
caused by the fact, that the transformed representations of implications p q⇒t%  and p q∨t%  are not 
identical, the representation p q∨t%  leads to unexpected results (63), which represent erroneous 
modes of reasoning (which are however often used by people without knowledge of 
principles of logic).  
 
 
8. Predicate logic 
We shall further deal with a simple form of predicate logic, which is based on unary 
predicates, P(x), where the distributed representation has a form (see chapter 6) 

( )P x = ⊗ + ⊗t pred P pred_var x                                       (64) 

The connection of this predicate with the universal quantifier, ( ) ( )x P x∀ , can be represented 
in the following way 

( )x _ _∀ = ⊗ + ⊗t uni quant uni uni quant_var x                        (65a) 

( ) ( ) ( ) ( ) ( )x P x x x∀ ∀ ∀= + ⊗ ⊗ + ⊗t t t pred P pred_var x                          (65b) 

Both conceptual vectors ( )P xt  a ( ) ( )x P x∀t  can be recognized and extracted by a clean up 
procedure.  
 This process is unnecessarily complicated for our purposes of further study of 
reasoning processes in the framework of predicate logic and their distributed representation; 
the application of the conceptual vector  t(∀x) for the representation of the symbol (∀x) 
basically only unnecessarily complicates the process of analysis of composed conceptual 
vectors containing as a constituent t(∀x). We shall therefore cease to use the symbol (∀x) 
explicitly, its meaning will be substituted by usage of a „universal variable“ x, i.e. predicate 
P(x) containing the universal variable x is interpreted as ( ) ( )x P x∀  , we can therefore with 

a certain caution use a „formula“ ( ) ( ) ( )x P x P x∀ ≡  .  
 In the predicate logic there exists a rule of universal instantiation, which concretizes 
a predicate with a universal quantifier onto a predicate with a concrete variable a, 
( ) ( ) ( )x P x P a∀ ⇒ , which is a result of a simple tautology of propositional logic 

( )( )p q p q∧ ∧ ⇒ . With an application of the universal variable x we shall rewrite this 
concretization into a simpler form 

( ) ( )P x P a⇒                                                         (66) 



22 

We shall construct a distributed representation of this universal instantiation of a simple unary 
replicator by a transformation vector T, see equations (56-58). The distributed representation 
(66) looks as follows  

( ) ( )P a P x≈ ⊗t t T                                                         (67) 

where ∗= ⊗T x a , then 

( ) ( )P a P x
∗≈ ⊗ ⊗t t x a                                                      (68) 

We can recapitulate our thoughts in saying that distributed representation of the universal 
instantiation is concretized by a transformation vector T , which helps to substitute a universal 
variable x by a „specified“ variable a.   
 We shall use this simplified representation of quantified predicates to study so called 
generalized modus ponens and generalized modus tollens 

( ) ( ) ( )( )
( )
( )

x P x Q x

P a

Q a

∀ ⇒

  a   

( ) ( ) ( )( )
( )
( )

x P x Q x

Q a

P a

∀ ⇒

                              (69a) 

or in a simplified form using a universal variable x 
( ) ( )
( )
( )

P x Q x

P a

Q a

⇒

  a   

( ) ( )
( )
( )

P x Q x

Q a

P a

⇒

                                         (69b) 

These generalized schemes of deductive reasoning follow directly from their standard 
sentential form (53)  and concretization  (63). The distributed representation of the main (top) 
premise of these rules has a form 

( ) ( ) ( )
( )

1

2

P x Q x⇒ = ⊗ + ⊗ ⊗ + ⊗ +

⊗ ⊗ + ⊗

t op impl var pred P pred_var x

var pred Q pred_var y
                        (70) 

The concretization of implication ( ) ( )P x Q x⇒  onto ( ) ( )P a Q b⇒ , can be formally 
expressed by an implication (see (66)) 

 ( ) ( )( ) ( ) ( )( )P x Q x P a Q a⇒ ⇒ ⇒                                         (71) 
where the right hand side has the following distributed representation  

( ) ( ) ( ) ( )1 2P a Q a⇒ = ⊗ + ⊗ + + ⊗ +t op impl var P a var Q b                       (72) 
Similarly as in the introductory illustrative example (see (67)), this transfer expressed 

by an implication (71) can be in a distributed representation written by the following 
transformation   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P a Q a P a Q a

∗∗

⇒ ⇒= ⊗ ≈ + ⊗ + + + ⊗ +t t T P a Q b Q b P a%                (73) 

where the new transformed distributed representation ( ) ( )P a Q a⇒t%  satisfies the formulas, which 
represent the rules (69) modus ponens resp. modus tollens 

( ) ( ) ( ) ( )P a Q a⇒+ ⊗ ≈ +P a t Q b%                                                  (74a) 

( ) ( ) ( ) ( )P a Q a⇒+ ⊗ ≈ +Q b t P a%                                                 (74b) 
 
Illustrative example – modeling of reflexive reasoning 
In this illustrative example we shall show, that the holographic distributed representation 
provides formal tools, which can be used to simulate the reasoning process based on 
generalized modus ponens (69). This process was widely studied by Shastri a Ajjanagadde 



23 

[15] by the connectionist system called SHRUTI, which was able to simulate reflexive 
reasoning based on predicate logic. Similar results are achieved also by a formalism of 
holographic distributed representation. 
 
 
give x z y own y z( , , ) ( , )⇒

give John Mary book( , , )
own Mary book( , )
own( , )x y can_sell x,y( )⇒

can_sell Mary,book( )

buy x y own x,y( , ) ( )⇒

buy John( , )something
own( )John,something

can_sell John,something( )

 
 
Figure 18. Illustration of an application of the generalized rule modus ponens (66) for deduction or knowledge 
discovery (marked by gray shading and also by incoming arrows) from implications (1-3) and from input facts 
(a-c), marked by outgoing arrows. 
 
 Let us have a formal system containing three general rules (see fig.18):  

(1) ( ) ( )give x, y,z own y,z⇒ , type x : donor; type y : acceptor; type z : object, 

(2) ( ) ( )buy y,z own y,z⇒ , type y : buyer; type z : object, 

(3) ( ) ( )own y,z can _ sell y,z⇒ , type y : owner; type z : object, 
and three observations (facts) 

(a) ( )give John,Mary,book ,  

(b) ( )own Mary,book   

(c) ( )buy John,something . 
What are the deductive conclusions of this system? The results are shown in the figure 18, we 
shall now deduce them with an application of distributed representation based on conceptual 
vectors and operations over them.   
 Let us analyze the first generalized modus ponens from the figure 18 

( ) ( )
( )
( )

give x, y,z own y,z

give John,Mary,book

own Mary,book

⇒

                                              (75) 

With an application of the approach described by (70-74) we can realize this scheme of 
reasoning by a representation of conceptual vectors, its single items (going top down) are 
represented as follows 

( )
( ) ( )

1
1 1 2dať x,y ,x vlastniť y ,x= ⊗ + ⊗ + ⊗t op impl var t var t                                        (76a) 
( )

( )
1

2 1

2 3

give John,Mary ,book= = + ⊗ +

⊗ + ⊗

t t give give_var John

give_var Mary give_var book
                     (76b) 

( )
( )

1
3 1

2

own Mary ,bookt= = + ⊗ +

⊗

t own own_var Mary

own_var book
                    (76c) 

where conceptual vectors ( )give x ,y ,xt  and ( )own y ,xt  are constructed analogically as in (45).  In the 

first step we must carry out a concretization of the implication ( )give x, y,z ⇒  ( )own y,z , so 
that the general variables x, y, z are substituted by concrete variables John, Mary, book. This 
concretization is carried out by a transformation T, which is specified by formulas (67-68) 

( ) ( )1 1
1 1

ˆ ≈ ⊗t t T                                                               (77) 
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where 
( )

( ) ( )
1

1 1 2give John,Mary ,book own Mary ,book
ˆ = ⊗ + ⊗ + ⊗t op impl var t var t                    (78a) 

( ) ( )1 1
1 1̂
∗= ⊗T t t                                                                (78b) 

Thus concretized representation ( ) ( )give John,Mary,book own Mary,book⇒  is in the next 
step applicable for modus ponens carried out by formulas (73-74) 

 ( ) ( )1 1
1 1̂ ′≈ ⊗t t T%                                                               (79a) 

where the resulting conceptual vector ( )1
1t%  already represents modus ponens, i.e. the next 

formula holds 

( )
( )

( )
1

1give John,Mary ,book own Mary ,book⊗ ≈%t t t                                          (80) 
The other three generalized modus ponens from the figure 18 can be realized in a similar way. 
 
Illustrative example –generalization by induction 
Let us have a „training“ set composed of sequences of simple unary predicates, which can be 
interpreted as observations  

( ){ }; 1 2train iA m a i , ,...,q= =                                                (81) 
Our goal will be to generalize these particular predicates into the form with a universal 
quantificator (or in our simpler formalism, with a universal variable) 

( ) ( ) ( )x m x m x∀ ≡⎡ ⎤⎣ ⎦                                                       (82) 

It means, that the single particular cases ( )im a  from the training set (77) are generalized into 
a formula, which is not directly deducible from them (see fig. 19) 

( ) ( ) ( )
?

1 pm a ... m a m x∧ ∧ ⇒                                                (83) 
 

m a( )1

m a( )2

m a( )p

...
... { ( ), m a1 m a m a( ), ( )}2 ...., p m x( )

stand-alone observations unification of observations
into a single set

inductive
generalisation 

 
Figure 19. Diagrammatic scheme of inductive generalization, which consists from three stages. In the first stage 
we have isolated observations ( )im a , which are not related. In the second stage the isolation of single 
observations is replaced by their unification into a single set, which expresses the fact that observations are not 
isolated and independent, but they have something in common. In the final, third stage, the unified form of 
observations is inductively generalized using a universal variable x, which represents a class of objects with the 
same property m.   
 

Let each predicate m(ai) from the training set Atrain is holographic represented in the 
following way  

( )i im a = ⊗ + ⊗t rel m m_var a                                               (84) 

These represented conceptual vectors can be mutually transformed by transformational 
vectors Ti,j  

( ) ( )ij
i , jm am a

≈ ⊗t t T                                                     (85a) 
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( ) ( )i j
i , j i jm a m a

∗ ∗= ⊗ ≈ ⊗T t t a a                                             (85b) 

Let us define a new transformation vector iT%   

1

q

i i , j i
j

∗

=

= = ⊗∑T T a x%                                                    (86a) 

1 2 p...= + + +x a a a                                                    (86b) 
where the conceptual vector x is assigned to the new ”generalized” vector, which represents 
each argument ai from the training set Atrain (in our further consideration about induction it is 
understood as a stand-alone conceptual entity equal to the representations of the original 
objects a1, a2, ..., ap) 

( ) ( )i i mm a ⊗ ≈ xt T t%                                                          (87) 

This formula can be interpreted as an inductive generalization, where particular objects ai 
from the training set in representations ( )im at  are substituted by a new object x, that can be 

interpreted as a new universal object.  
 
 
9. Formal languages 
In Section 4 we have studied an application of holographic distributed representation of  
sequences of symbols, which are considered as one of the simplest structured data. Let us 
consider a finite vocabulary { }a,b,..., p,q,...=A composed of lower-case letter that are called 
the terminal symbols. A set of all strings composed of terminal symbol is denoted by 

{ }L a,b,...,aa,ab,...,aaa,aab,..., ppp,...+= =A . This infinite set (but enumerable) set may be 
divided onto two disjoint nonempty subsets, G NGL L L= ∪ , and now we are standing before a 
problem how to briefly characterize the strings from GL . For example, we may look for a 
characteristic function that specifies the subset GL  

( )
( )
( )

1 if

0 otherwise
G

G

x L
x

∈⎧⎪η = ⎨
⎪⎩

                                                    (88) 

then ( ){ }1G GL x | x L x= ∈ ∧ η = . This approach of characteristic function is rather formal and 
specifies, in fact, strings from GL  by their enumeration, i.e. whether a string x L∈  belongs or 
not to the subset GL . 
 In general, we may postulate that strings from GL  are hierarchically chunked into two 
or more components, such that going successively from initially “unchunked” string we arrive 
at one global chunk. This process may be represented by many different ways (see Fig. 20, 
where three simple ways of chunking are presented). The approach of rooted tress used in Fig. 
20 is one of simplest ways to formalize the above mentioned chunking process of string 
symbols into hierarchically higher entities, it is simple formalized by making use of the so-
called productions (rewriting rules), for an example presented in the first row in Fig. 20 we 
get 

1

2

3

4

:
:
:
:

P S BC
P B Ac
P C ab
P A ab

→
→
→
→

                                                               (89) 
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where the capital letters are called the nonterminal symbols (loosely speaking, they represent 
labels of chunks), the capital S, called the starting nonterminal (it corresponds to 
hierarchically top chunk encompassing all terminal symbols from the used string). Applying 
then productions from (89) we may create successively the string ( )x abcab=  as follows 

abcC
AcC

S BC abcabAcab
Bab Acab

⎧ → ⎫⎧
→⎪ ⎨ ⎪→ →→⎨ ⎬⎩

⎪ ⎪→ → ⎭⎩

                                          (90) 

We see that there exist three different ways how to construct the string ( )x abcab= . 
 

S B A a,b c C a,b( ( ( ), ), ( ))

C

S

S C B a A b,c a b( ( ( , ( )), ), )

( )a,b,c,a,b

( )a,b,c,a,b

a   b   c   a   b

a   b   c   a   b

A B C  
 
Figure 20. Two illustrative conversions of a sequence (a,b,c,a,b) into different „nested“  structures: (A) Rooted 
tree structure that aggregates simple sequence elements into higher-level hierarchic structures, (B) composite 
two argument functions, and (C) nested subsets encompass one or more symbols such that the resulting structure 
correspond to an aggregation of symbols.   
 
 The production system (89) may be considerably simplified such that we removed all 
nonterminal symbols that are redundant (in this specific case we may remove the nonterminal 
C, which is identical to A.   

1

2

3

:
:
:

P S BA
P B Ac
P A ab

→
→
→

                                                           (91) 

Moreover, the production system may be extended about one or more productions such that 
the construction of the original string ( )x abcab=  is saved, but we may potentially construct 
many other new different strings x L∈ , e.g.  

1

2

3
34

4

:
:
:

:
:

P S BA
P B Ac
P A ab

P A ab | Ab
P A Aa

→
→

→ ⎫
→⎬′ → ⎭

                                         (92) 

where new production 4 :P A Aa′ →  introduces a generative feature of the resulting used 
scheme.  
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 The above considerations may be generalized onto a concept called the grammar [xx] 
(initially introduced by Noam Chomsky [20] almost 50 years ago)specified as follows  

 ( )G N ,T ,S ,P=                                                       (93) 
where N is a set composed of nonterminal symbols (in our above preliminary considerations 
represented by capital letters), T ⊂A  is a set composed of terminal symbols (represented by 
lower case letters), S N∈  is a starting symbol especially distinguished from elements of 
nonterminals N, and finally, P is a set composed of the so-called productions (often called 
also production rules or rewriting rules)  

{ }P = α → β                                                          (94) 

where α is a substring composed of  terminal and at least one nonterminal symbols and β is a 
substring composed of terminal or nonterminal symbols. In particular, the set P contains a 
production of the form S → β , this production will initialized the procedure of creation of 
strings that are induced by the grammar G. These strings, initialized by the starting symbol S 
and composed entirely of terminal symbols form a subset denoted by GL , which is called the 
language. It means that the characteristic function (88) is now unambiguously specified by 
the production set (94) such its elements are (1) composed only of terminal symbols and (2) 
its creation procedure is initialized the nonterminal starting symbol S.  
 We have seen that each grammatical string Gx L∈  may be interpreted by a rooted tree 

( )t x  called the derivation tree, where a top vertex is labeled by the stating symbol S, its leafs 
(terminal vertices) are labeled by terminal symbols, and all other remaining intermediate 
vertices are labeled by nonterminal symbols (cf. Fig. 20). Derivation trees have an 
extraordinary position in artificial intelligence and cognitive science [21,22], a semantic 
meaning of the grammatical string Gx L∈  is specified not only by the string itself but also by 
its derivation tree ( )t x . If a string has two or more derivation trees, then we may say that it 
has more than one different semantic meanings. An actual semantic meaning of  Gx L∈  will 
depend on the used derivation tree ( )t x ,  which specifies an actual chunking of string 
symbols onto hierarchically higher clusters that contribute to the whole semantic meaning by 
a specific contribution. 
 

S

Ab Ba
P1

aA
P2

A

a bB
P2

B

b

S

Ba Ab

ba ab

bba aab

bbba

...
..

...
..Tree of all formulae

a b

a b

bBa aAb

bbBa aaAb

aaabbbbBa aaaAb

(A)

(B)  
Figure 21. (A) Diagrammatic representation of productions (1).. (B) An infinite tree of all possible solutions – 
formulae.  
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 Let is consider the following simple grammar { } { }( )G N S , A,B ,T a,b ,S ,P= = =  with 
productions specified by  

1

2

3

:
:
:

P S a |b | Ab | Ba
P A a | aA
P B b |bB

→
→
→

                                                        (95) 

with productions diagrammatically visualized by These productions are diagrammatically 
visualized in Fig. 21, diagram A.  
 From fig. 21 we may construct all possible formulae that are specified by the 
productions (95) 

{ } { }
{ }

; 0 ; 0n n
GL b a n a b n

a,b,ab,ba,bba,aab,bbba,aaab,...

= ≥ ∪ ≥ =

=
                                        (96) 

For each grammatical formula there exists on tree of all formulae an oriented path beginning 
in the root of tree (labeled by a starting nonterminal S) and ending at a leaf evaluated by the 
respective formula, e.g. 

G

G

G

G

G

G

a L S a
b L S b

ab L S Ab ab
ba L S Ba ba

aab L S Ab aAb aab
bba L S Ba bBa bba

∈ ⇒ →
∈ ⇒ →
∈ ⇒ → →

∈ ⇒ → →
∈ ⇒ → → →
∈ ⇒ → → →

                                             (97) 

The corresponding derivation trees are listed in Fig. 22. 
 
 

P2

A

a a

A

A b Bb

B B

P1 P2

.......

a b

SS

a

b

SS

f a1= f b2=

f ab3= f ba4=

f bba5= f aab6=

(A)

(B)

A b

S S

B a

S

B a

S

A b

S

a

S

b

a

A

A

a

b

b

Bb

Ba

 
 
Figure 22. (A) Detailed diagrammatic representation of productions (1). (B) Derivation trees assigned to the first 
six formulae.  
 
HRR representations of derivation trees in Fig. 22 are (cf. (44)) 
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( )
( )

( )( )
( )( )

1

2

3

4

5

6

= ⊗
= ⊗

= ⊗ + ⊗ + ⊗

= ⊗ + ⊗ + ⊗

= ⊗ + ⊗ + ⊗ + ⊗ + ⊗

= ⊗ + ⊗ + ⊗ + ⊗ + ⊗

t left a
t left b
t left A left a right b

t left B left b right a

t left B left b right B left b right a

t left A left a right A left a right b

                (98) 

where we have omitted the vector representation S of the nonterminal starting symbol, which 
appears as the first in each representation of derivation trees.                                                              
 HRR representation of the first grammatical strings (96) are (cf. (34)) 

1

2

3

4

5

6

= ⊗
= ⊗
= ⊗ + ⊗

= ⊗ + ⊗
= ⊗ + ⊗ + ⊗

= ⊗ + ⊗ + ⊗

f first a
f first b
f first a second b
f first b second a
f first b second b third a
f first a second a third b

                                    (99) 

The used holographic representations of derivation trees and string of symbols have a serious 
shortcoming; different t’s have great similarities between them (the same property is also true 
for vectors t’s), see Fig. 23. This fact causes that an immediate application of (28) to form an 
analogy of associative memory vector 1 1 6 6...= ⊗ + + ⊗T t f t f  could not be well performed, 
since this particular memory vector does not satisfy the following two important properties 

i i
∗ ⊗ ≈t T t  and   i i

∗ ⊗ ≈f T f  that are of basic importance for correct recognition of T. 
Therefore we have to use slightly another approach to the construction of associative memory 
vector T based on the so-called label vectors. 
 

1 2 3 4 5 6

1

2

3

4

5

6

0
0.2500
0.3750
0.5000
0.6250
0.7500
0.8750
1.000

1 2 3 4 5 6

1

2

3

4

5

6

A B  
Figure 23. Graphic representation of similarities (A) between holographic distributed representations of 
derivation trees (98) and (B) between their terminal symbol saequences.  
 
 Let us have a set of six randomly generated label vectors 1 2 6, ,...,x x x , which will 
serve in our forthcoming considerations as labels for distinguishing of vector representations 
of derivation trees (that may be very similar from the standpoint of their mutual overlap 
specified by (21)). Applying these “label” vectors we construct the following new modified 
vectors 
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i i i= ⊗t x t%   and  i i i= ⊗f x f%                                        (100) 
A transformation vector is determined as follow 

6

1
i i

i

∗

=

= ⊗∑T t f%%                                                          (101) 

The modified vectors are specified by 

i i⊗ ≈t T f%%   and  i i
∗⊗ ≈f T t% %                                                (102) 

for i=1,2,…,6. It means that the transformation vector T* plays a role of parser, which assigns 
to a „formula” f the respective „derivation tree” t. In other words, we have „algebraized” the 
highly symbolic parsing process of formulae, which assigns derivation trees to formulae, 
where the trees are very important for a construction of semantic interpretations of the 
formulae (i.e. the semantic meaning of formulae is specified not only by its terminal symbols 
but also by its respective derivation tree).  
 

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

A B
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p

 
Figure 24. Reconstruction of holographic representations of derivation tress (A) and symbol sequences (B) 
induced by the grammar (95). The light darkness columns correspond to overlap between reconstructed and 
original vectors    
 
 
 
10. Conclusions 
Holographic reduced representation offers new unconventional solution to one of the basic 
problems of artificial intelligence and cognitive science, which is to find a 
suitable distributive coding of structured information (sequence of symbols, nested relational 
structures, etc.).  The used distributed representation is based on two binary operations: unary 
operation „involution“ and binary operation „convolution“ over a domain of n-dimensional 
randomly generated conceptual vectors, which elements satisfy normal distribution N(0,1/n). 
Application of this distributed representation allows us to model various types of associative 
memory, which are represented by a conceptual vector and also to decode a memory vector, 
i.e. to determine the conceptual (atomic) vectors it is composed of. Such an analysis of the 
memory vector is carried out by a clean-up procedure that determines from the overlap of the 
vectors, which of the vectors is the most similar to the memory vector. We have also 
described the process of chunking of vectors, which allows us to overcome the undesirable 
fast degradation of success in retrieval of all the components of the memory vector. The 
countermeasure against the degradation consists in chunking of several vectors into one, 
which is then put into the memory vector. Holographic reduced representation allows to 
measure similarity between two structured concepts by a simple algebraic operation of scalar 
product of their distributed representations. This fact can be very useful, when we want to 
model processes, which search through memory to find its similar (analogical) single 
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components. In the last part of the paper we have demonstrated, that the holographic reduced 
representation may be used also to model an inference process based on the rules modus 
ponens and modus tollens, and moreover, we have demonstrated the effectiveness of the 
approach for modeling of an inductive generalization process. 
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