Artificial
Intelligence

|
ER Artificial Intelligence 128 (2001) 203-235

REAEY

ELSEV

www.elsevier.com/locate/artint

A logic-based theory of deductive arguments”

Philippe Besnard 2*, Anthony Hunter

& CNRS, IRIT, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
b Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK

Received 8 December 2000

Abstract

We explore a framework for argumentation (based on classical logic) in which an argument is a
pair where the first item in the pair is a minimal consistent set of formulae that proves the second
item (which is a formula). We provide some basic definitions for arguments, and various kinds of
counter-arguments (defeaters). Thisleads us to the definition of canonical undercuts which we argue
are the only defeaters that we need to take into account. We then motivate and formalise the notion
of argument trees and argument structures which provide away of exhaustively collating arguments
and counter-arguments. \We use argument structures as the basis of our general proposal for argument
aggregation.

There are anumber of frameworks for modelling argumentation in logic. They incorporate formal
representation of individual arguments and techniques for comparing conflicting arguments. In
these frameworks, if there are a number of arguments for and against a particular conclusion, an
aggregation function determines whether the conclusion istaken to hold. We propose ageneralisation
of these frameworks. In particular, our new framework makes it possible to define aggregation
functions that are sensitive to the number of arguments for or against. We compare our framework
with a number of other types of argument systems, and finaly discuss an application in reasoning
with structured news reports. 00 2001 Elsevier Science B.V. All rights reserved.

Keywords:Argumentation systems; Arguments; Counter-arguments; Inconsistency handling; Logic; Undercuts

Y This is an extended version of a paper entitled “Towards a logic-based theory of argumentation” published
in the Proceedings of the National Conference on Artificial Intelligence (AAAI'2000), Austin, TX, MIT Press,
Cambridge, MA, 2000.

* Corresponding author.

E-mail addressesbesnard@irit.fr (P. Besnard), A.Hunter@cs.ucl.ac.uk (A. Hunter).

0004-3702/01/$ — see front matter [2001 Elsevier Science B.V. All rights reserved.
Pll: S0004-3702(01)00071-6

204 P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235

1. Introduction

In an argument, we distinguish the reasons, the conclusion and the method of inference
by which the conclusion is meant to follow from the reasons. The nature of inference is
diverse and includes analogical inference, causal inference, and inductive inference. We
focus on deductive inference and hence on deductive arguments, i.e., the conclusion is
a deductively valid consequence of the reasons. We investigate the formalisation of such
arguments in the setting of classical logic. So, our starting position is that a deductive
argument consists of a claim entailed by a collection of statements such that the claim as
well asthe statementsare denoted by formulaeof classical logicand entailment isidentified
with deductionin classical logic.

In our framework, an argument is simply a pair where the first item in the pair is a
minimal consistent set of formulae that proves the second item. That is, we account for
the reasons and the conclusion of an argument though we do not indicate the method
of inference since it does not differ from one argument to another: We only consider
deductive arguments, hence the method of inference for each and every argument is always
entailment according to classical logic.

Most proposals for modelling argumentation in logic are very limited in the way that
they combine argumentsfor and against a particular conclusion following. A simple form
of argumentation is that a conclusion follows if and only if there is an argument for
the conclusion and no argument against the conclusion. In our approach, we check how
each argument is challenged by other arguments, and by recursion for these counter-
arguments. Technically, an argument is undercut if and only if some of the reasons for
the argument are rebutted. Each undercut to a counter-argument is itself an argument and
so may be undercut, and so by recursion each undercut needs to be considered. Exploring
systematically the universe of argumentsin order to present an exhaustive synthesis of the
relevant chains of undercutsfor a given argument is the basic principle of our approach.

Following this, our notion of an argument treeisthat it isasynthesis of al the arguments
that challengethe argument at theroot of thetree, and it also containsall counter-arguments
that challenge these arguments and so on recursively.

Modelling argumentation has been a subject of research as long as the study of logic.
They are closely intertwined topics, and modelling argumentation in logic is a natural,
and important, research goal. A useful introduction to argumentation is in [23], and
comprehensiverecent reviews of argumentationin logic include[5,20]. The argumentation
formalism that we give in this paper, including the notions of argument trees and argument
structures, provides a complementary addition to the set of existing proposals for logic-
based argumentation systems.

In Sections 2, 3, and 4, we provide some basic definitions for arguments, and various
kinds of defeaters. This leads us to the definition of canonical undercuts which we argue
are the only defeaters that we need to take into account (Section 5). We then motivate
and formalise the notion of argument trees and argument structures which are a way of
exhaustively collating arguments and counter-arguments (Sections 6-8). We use argument
structures as the basis of our general proposal for argument aggregation. In Section 9,
we compare our framework with some other logic-based argument systems. Finally, we
discuss an application to argumentati on with structured news report (Section 10).

P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235 205
2. Preliminaries

We assume familiarity with classical logic.

We consider a propositional language. We use «, 8, y, ... to denote formulae and
A, D, ¥, ... to denote sets of formulae. Deduction in classical propositional logic is
denoted by the symbol + as usual. In addition, L is used to denote inconsistency. So,
@ t# 1 for example meansthat @ is consistent.

For the following definitions, wefirst assume a database A (afinite set of formulag) and
usethis A throughout.

We further assume that every subset of A is given an enumeration («sq, ..., a,) Of
its elements, which we call its canonical enumeration. This really is not a demanding
congtraint: In particular, the constraint is satisfied whenever we impose an arbitrary total
ordering over A. Importantly, the order has no meaning and is not meant to represent any
respective importance of formulaein A. It is only a convenient way to indicate the order
in which we assume the formulae in any subset of A are conjoined to make a formula
logically equivalent to that subset.

The paradigm for our approach is a large repository of information, represented by A,
from which arguments can be constructed for and against arbitrary claims. Apart from
information being understood as declarative statements, there is no a priori restriction on
the contents, and the pieces of information in the repository can be as complex as possible.
Therefore, A isnot expected to be consistent. It need even not be the case that every single
formulain A is consistent.

3. Arguments

Here we adopt avery common intuitive notion of an argument and consider some of the
ramifications of the definition. Essentially, an argument is a set of relevant formulae that
can be used to classically prove some point, together with that point (we represent a point
by aformula).

Definition 3.1. Anargumenisapair (@, «) such that

1) ot/ L.

2 ?Fa.

(3) @ isaminimal subset of A satisfying (2).
We say that (@, o) isan argument for «. We call « the consequent of the argument and @
the support of the argument.

The minimality condition is not an absolute requirement, although some properties
below depend on it. Importantly, the condition is not of a mere technical nature. The
underlying idea is that an argument makes explicit the connection between reasons for
aclaim and the claim itself. But that would not be the case if the reasons were not exactly
identified. In other words, if reasons incorporated irrelevant information and so included
formulas not used in the proof of the conclusion.

206 P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235
Example3.2. Let A={a,a — B,y — —B,v,8,8 — B, —a, —~y}. Some arguments are;

({o, ¢ — B}, B)
{y = —=B,v},—B)
({8,6 — B}, B)
({—a}, —a)
{=r})

({a > B}, ma v B)
{=r}, 86— —y)

Argumentsare not independent. | n a sense, some encompass others (possibly up to some
form of equivalence). To clarify thisrequires afew definitions as follows.

Definition 3.3. An argument (&, «) is more conservativéhan an argument (¥, g8) iff
®CWandBta.

Example 3.4. ({a},a Vv B) is more conservative than ({«@, @ — B}, B). Here, the latter
argument can be obtained from the former (using « — B as an extra hypothesis) but the
reader is warned that thisis not the case in general as we now discuss.

Example 3.4 suggeststhat an argument (¥, 8) can be obtained from amore conservative
argument (@, «) by using ¥ \ @ together with « in order to deduce g (in symbols,
{a}UW\ @+ B orequivaently, ¥ \ @ o — B). Asjust mentioned, this doesnot hold in
full generality. A counterexampleconsistsof ({a A y}, «) and ({a Ay, —a Vv BV =y}, B).
However, aweaker property holds:

Theorem 3.5. If (@, «) is more conservative thaiw, 8) thenw \ @ ¢ — (« — B) for
some formula such thatd - ¢ and¢ I/ « unlessx is a tautology.

Proof. Since (@, «) isan argument, @ isfiniteand @ + « so that @ islogically equivalent
toa A (a — ¢') for some formula ¢’ (that is, @ islogicaly equivalent to a A ¢ where ¢
isa — ¢'). Since (@, o) is more conservativethan (¥, B), ¥ = ® U W \ &. Since (¥, B)
isan argument, ¥ - 8. Hence, ® UW¥ \ @ - B. Then, {a A ¢} U W \ & I B. It follows
thaa ¥\ @ ¢ — (¢« — B). There only remainsto show that @ - ¢ (whichistrivial) and
that ¢ I/ @ unless « isatautology. Assuming ¢ - o givesa — ¢’ - «, but the latter means
that o isatautology. O

Theinteresting case, asin Example 3.4, iswhen ¢ can be atautology.
Theorem 3.6. Being more conservative defines a pre-ordering over arguments. Minimal

arguments always exist, unless all formulas4nare inconsistent. Maximal arguments
always existThey are(@, T) whereT is any tautology.

P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235 207

Proof. Reflexivity and transitivity result from thefact that these two propertiesare satisfied
by set inclusion and logical consequence.

Easy aswell isthe case of (¢, T): An argument is maximal iff it is of thisform because
¢ and T are extremal with respect to set inclusion and logical consequence, respectively.

Assuming that some formulain A is consistent, A has at least one maximal consistent
subset ®. Since A is finite, so is ® and there exists a formula « that @ is logically
equivalent with. Also, thereis some minimal @ C ® C A such that @ and ® arelogically
equivalent. Clearly, @ is consistent and @ is a minimal subset of A such that @ + «.
In other words, (@, «) is an argument. There only remains to show that it is minimal.
Consider an argument (¥, 8) such that (@, o) ismore conservativethan (¥, 8). According
to Definition 3.3, ® C ¥ and B+ «. Since @ is logicaly equivalent with a maximal
consistent subset of A, it follows that ¥ is logicaly equivalent with @ (because ¥ is a
consistent subset of A by definition of an argument). So, « is logically equivalent with
each of @ and ¥. Asaconsequence, ¥ - 8 and 8 - « yield that « islogically equivalent
with 8, too. Since @ isaminimal subset of A suchthat @ - « (cf above), it followsthat @
isaminimal subset of A suchthat @ - 8. However, ¥ isaso aminimal subset of A such
that ¥ + B (by definition of an argument). Hence, ® = ¥ (dueto @ C ¥). Inadl, (¥, B)
is more conservative than (@, «). Stated otherwise, we have just shown that if (@, «) is
more conservative than (¥, 8) then the converse is true as well. l.e., (@, «) is minimal
with respect to being more conservative (as applied to arguments). O

A useful notionisthen that of anormal form (afunction such that any formulais mapped
to alogically equivalent formulaand, if understood in a strict sense as here, such that any
two logically equivalent formulas are mapped to the same formula).

Theorem 3.7. Given a normal form, being more conservative defines an ordering
provided that only arguments which have a consequent in normal form are considered. The
ordered set of all such arguments is an upper semilattigdeen restricted to the language

of A). The greatest argument always exists, isT).

Proof. Let (&,«) and (¥, B) be more conservative than each other. Clearly, ® = .
Also, o - g and B «. That is, « and g are logically equivaent. Since « and 8 are in
normal form, o« = B. So, antisymmetry holds while reflexivity and transitivity follow from
Theorem 3.6.

Since A is finite, there only are finitely many arguments (2, y) for each y. Also, the
language of A contains only a finite number of atomic formulae and it allows only for a
finite number of formulas that are not logically equivalent. That is, there only is a finite
number of argumentsif they are restricted to the language of A. So, all the upper bounds
of two given arguments (@, o) and (¥, B) form afinite set {(£21, ¥1), ..., (24, yu)}. FoOr
i=1...,n2; CPand; C¥.Hence 2; C®N¥.Then, ®NV¥ y; because (£2;, y;)
isan argument. It followsthat ® N W 91 A --- Ay, @and an argument (O, y1 A -+ A 1)
can be constructed where ® is a minimal subset of ® "W suchthat ® Fy1 A -~ Ay,
(since @ and ¥ are consistent by definition of an argument, ® is consistent). For matter of
convenience, y1 A --- A ¥, isassumed to be in normal form as doing so obviously causes
no harm here. Clearly, every (£2;, y;) is more conservative than (©, y1 A -+ A y,). This

208 P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235

meansthat (®, y1 A--- Ay,) isthel.u.b. of (@, «) and (¥, B) (uniquenessof @ isimposed
by the usual property of orderings of allowing for at most onel.u.b. of any subset).
Asfor the greatest argument, it istrivial that ¥ C @ anda T forall @ andw. O

Example 3.8. The g.l.b. of ({« A B}, @) and ({a A =B}, a) does not exist. If A =
{a A B,a A =B}, then there is no least argument. Taking now A = {«, 8, @ < B}, there
is no least argument either (although A is consistent). Even though A = {«, 8 A =8} is
inconsistent, theleast argument exists: ({a}, ') (wherea’ standsfor the normal form of «).
Asthelastillustration, A = {« V 8, B} admitstheleast argument ({8}, B’) (where 8’ stands
for the normal form of g).

Inany case, (@, T) ismore conservative than any other argument.

Also, irrespective of whether we have an ordering or not, the “being more conservative”
relation induces, as any pre-ordering does, an equivalence relation (linking any two
argumentsthat are more conservative than each other). However, another basis for equating
two arguments with each other comes to mind: Pairwise logical equivalence of the
components of both arguments.

Definition 3.9. Two arguments (®,«) and (¥, 8) are equivalentiff & is logicaly
equivalent to ¥ and « islogically equivalent to 8.

Theorem 3.10. Two arguments are equivalent whenever each is more conservative than
the other. In partial converse, if two arguments are equivalent then either each is more
conservative than the other or neither is.

Proof. We only prove the second part. Consider two equivalent arguments (@, «) and
(W, B) such that (@, «) is more conservative than (¥, 8). Of course, @ + «. According
to the definition of equivalent arguments, « is logically equivalent with 8. So, @ + 8. By
definition of an argument, ¥ is a minimal subset of A satisfying ¥ + 8. Hence, ¥ = @
because @ C ¥ followsfrom the fact that (@, «) ismore conservativethan (¥, g). Finaly,
¥ = @ and « being logically equivalent with 8 make each of (¥, 8) and (@, o) to be more
conservativethantheother. O

So, there exist equivalent arguments (&, o) and (¥, B) that fail to be more conservative
than each other (as in Example 3.11 below). However, if (&,«) is drictly more
conservative than (¥, 8) (meaning that (@, «) is more conservative than (&, g) but (¥, 8)
is not more conservative than (@, o)) then (@, o) and (¥, B) are not equivalent.

Example3.11l. Let® ={a, B} and ¥ ={a V B, a <> 8}. Thearguments (&, « A B) and
(¥, a A B) are equivalent even though noneis more conservative than the other. This means
that there exist two distinct subsets of A (namely, @ and ¥) supporting e A 8.

Whilst equivalent arguments make the same point (that is, the same inference), we do
want to distinguish equivalent arguments from each other. What we do not want is to
distinguish between arguments that are more conservative than each other.

P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235 209
4. Defeaters, rebuttalsand undercuts

In recent literature [5,20], conflict among arguments is investigated in more or less
abstract forms. The most abstract form is that of an attack relation, defined as a subset
of the cartesian product of the set of all arguments with itself [7]. Exploring such an
approach where the internal structure of arguments is ignored, thus opposing our view
that an argument comes with a claim, is delayed to Section 9. A more concrete form of
conflict is captured with the notion of defeaters, which are arguments whose conclusion
refutes the support of another argument [17-19,24,25]. This gives us agenera way for an
argument to challenge another.

Definition 4.1. A defeaterfor an argument (@, «) is an argument (¥,) such that
B (@A Agy) for some{gs, ..., ¢} S P.

Example4.2. Let A ={—o,aV B,a < B,y — «a}. Then, {a V B,a <> B},a A B) iSa
defeater for ({—a, y — a}, =y). A more conservative defeater for ({—a, y — a}, —y) is
({av B,a< BlaVvy).

Some arguments directly oppose the support of others, which amounts to the notion of
an undercut.

Definition 4.3. Anundercutfor an argument (@, «) isan argument (¥, —(¢p1 A - - A dy))
where{¢1,...,¢,} C P.

Example 44. Let A ={o,a — B,y,y — —a}. Then, ({y,y — —a}, =(x A (@ = B)))
is an undercut for ({a,« — B}, B). A less conservative undercut for ({a, @ — B}, 8) is
{y,y = —a}, ~a).

Presumably, the most direct form of aconflict between argumentsiswhen two arguments

have opposite conclusions. This case is captured in the literature through the notion of a
rebuttal.

Definition 4.5. An argument (¥, 8) is arebuttalfor an argument (@,) iff 8 <> -« isa
tautology.

Trivially, undercutsare defeaters but the next result showsthat rebuttal stoo are defeaters.

Theorem 4.6. If (¥, B) is a rebuttal for an argumenid, «) then (¥, B) is a defeater for
(P, a).

Proof. By definition of an argument, @ I «. By classical logic, —a = —(¢1 A -+ A ¢y)
where @ = {¢1,...,¢,}. AS B < —a isatautology, B+ —(p1 A --- A ¢,) follows. O

Theorem 4.7. Let (¥, B) be a defeater for an argumel®, «). If « Vv 8 is a tautology
and{«, B} I ¢ for eache € @ then(¥, B) is a rebuttal for(®, «).

210 P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235

Proof. Since (¥, 8) is a defeater of (@, «), we have B = —=(¢p1 A -+ A ¢,) fOr some
{$1,..., ¢4} € @. By assumption, {a, B} - ¢; fori =1,...,n. Therefore, {a, B} - L.
Using classical logic, it follows that 8 <> —« is a tautology because o v B is a tautology
(cf. the assumptions). O

Of course, not all defeaters can meet the conditionsin Theorem 4.7 and it may happen
that an argument has defeaters but no rebuttals as illustrated now:

Example 4.8. Let A = {a A B, —8}. Then, ({x A B}, a) has at least one defeater but no
rebuttal.

Evidently, an undercut for an argument need not be a rebuttal for that argument.
Importantly, arebuttal for an argument need not be an undercut for that argument. However,
a rebuttal for an argument is a less conservative version of a specific undercut for that
argument as we now prove.

Theorem 4.9. If (¥, 8) is a defeater fof®,) then there exists an undercut f6b,)
which is more conservative thdw, g).

Proof. By definition of a defeater, ¥ 1/ L and ¥ + 8 while 8 —(¢p1 A --- A ¢,) for
some {¢1,...,¢,} € ®@. There then exists a minimal subset ¥/ C ¥ C A such that
U= =(p1A---Ay). Of course, W' I L. Therefore, (W', =(¢1 A - - - A¢y)) isan argument
and it clearly is an undercut for (@,). Verification that (¢, —(¢1 A --- A ¢y)) iS More
conservativethan (¥, 8) isimmediate. O

Corollary 4.10. If (¥, B) is a rebuttal for(®, «) then there exists an undercut f@p, o)
which is more conservative thaw, g).

Theundercut mentioned in Theorem 4.9 and Corollary 4.10 is strictly more conservative
than (¥, 8) whenever — 8 failsto belogically equivalent with @.

A phenomenon similar to what Corollary 4.10 describes occurs in argument structures
(cf. Theorem 8.8).

As a firgt illustration, ({—«a}, —«) is an undercut for ({a,a — B}, 8) but is not a
rebuttal for it. Clearly, ({—a}, —a) does not rule out 8. Actually, an undercut may even
agree with the conclusion of the objected argument: ({8 A —a}, —«) is an undercut for
({a, @ — B}, B). In this case, we have an argument with an undercut that conflicts with
the support of the argument but implicitly provides an aternative way to derive the
conclusion of the argument. This should make it clear that an undercut need not question
the conclusion of an argument but only the reason(s) given by that argument to support its
conclusion. Of course, there are al'so undercuts that challenge an argument on both counts:
Just consider {({—a A =B}, —a) which is such an undercut for ({«, « — B}, B).

Asanother example, ({—8}, —8) isarebutta for ({a, « — B}, B) but is not an undercut
for it because g isnotin {«, « — B}. Observethat there isnot even an argument equivalent
to ({—B}, =B) which would be an undercut for {{«, « — B}, 8): In order to be an undercut
for ({a, — B}, B), an argument should be of the form (@, —«a), (&, =(a¢ — B)) or

P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235 211

(D, —(a A (@ — B))) but =8 is not logically equivalent to —a, —(a« — B) or —(ax A
(@ — B)).

Theorem 4.11. If an argument has a defeater, then there exists an undercut for its defeater.

Proof. Let (¥, B) be a defeater for (@, «). Thatis, W =B and B —(p1 A --- A @y) fOr
some {¢1, ..., ¢p} S . Writing ¥ as {¥1, ..., ¥n}, weget {¥1,...,¥mt = —(d1 A -
A¢p). By classical logic, {¢1,...,0u} =1 A---AY)and @ = —=(Y1 A Ary,). Let
@' C @ beaminimal subset entailing =(¥1 A -+ - A,). Then, (@', = (Y1 A -+ A Yry)) IS
an argument and it is an undercut for (&, 8). O

Corollary 4.12. If an argumentA has at least one defeater, then there exists an infinite
sequence of argumentd), <, such thatAi is A and A,,.1 is an undercut ofd,, for
everyn € w*.

The above Corollary 4.12 is obviously a potential concern for representing and
comparing arguments. We address this question in Section 6.

Theorem 4.13. Let(®, o) be an argument for which, 8) is a defeater. Theny Z &.

Proof. Assume the contrary, ¥ C @. By definition of adefeater, ¥ - g and 8 - —(¢1 A
.-« A ¢p) for some {¢1,...,¢,} € @. Therefore, ¥ = —(¢p1 A --- A ¢y). Since ¥ C @,
monotonicity then yields @ - —(¢1 A --- A ¢y,). However, @ = ¢1 A -+ A ¢, because
® D {p1,...,¢,}. Thatis, @ + L and this contradicts the assumption that (@, @) is an
argument. O

Theorem 4.13 provesthat, in the sense of Definition 3.1 and Definition 4.1, no argument
is self-defeating.

Theorem 4.14. Given two argument$d, o) and (¥, 8) such that{«, 8} - ¢ for each
¢ € @, if (W, B) is a defeater fof®,), then(®, «) is a defeater fory, 8).

Proof. By assumption, ¥ 8 and B = —(¢1 A --- A ¢,,) for some {¢1, ..., ¢,} € @. By
classical logic, it followsthat ¥ U@ F L. So, ¥ U {a} - L because ¥ 8 and {«, B}
entails®. Hence, a = — (Y1 A - - - AY) Where (Y1, ..., ¥} =¥. O

Corollary 4.15. Let« be logically equivalent withd. If (¥, 8) is a defeater for®, «),
then(®, «) is a defeater fo(w, g).

Proof. Since (¥, B8) is a defeater for (@, «), it follows that B = —(¢1 A --- A ¢y,) foOr
some {¢1, ..., ¢n} € @. By classical logic, @ U {8} F L and thus {«, 8} - L because «
is logically equivalent with @. By classical logic, {«, 8} F ¢ for each ¢ € & and
Theorem 4.14 applies. O

Corollary 4.16. If (¥, B) is a rebuttal for(®,), then(®, «) is a rebuttal for(y, B).

212 P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235

Proof. As (¥, 8) isarebuttal for (&, «), it followsthat « v B isatautology and {«, B} -
for each v € w. Apply Theorem 4.6 to the assumption, then apply Theorem 4.14, and, in
view of what we just proved, apply Theorem4.7.1 O

Theorem 4.17. Given two argumentgpb, o) and (¥, 8) such that-(a A 8) is a tautology,
(¥, B) is a defeater fof®, o) and (@, «) is a defeater fofw, 8).

Proof. As (@, «) isan argument, @ - «. By assumption, {«, 8} + L. Therefore, @ U {8}
L. Thatis, B+ —(p1 A -+ A @) Where {p1, ..., ¢,} = @. The other case is clearly
symmetric. O

While Theorem 4.13 expressesthat the defeat relation is antireflexive, Theorem 4.14 and
Theorem 4.17 show that the defeat relation is symmetric on various parts of the domain.

Theorem 4.18. A is inconsistent if there exists an argument that has at least one defeater.
Should there be some inconsistent formulaiinthe converse is untrue. When no formula

in A is inconsistent, the converse is true in the fotA is inconsistent then there exists
an argument that has at least one rebuttal.

Proof. Suppose (¥, B) isadefeater for (@, o). Hence, there exists {¢1, ..., ¢,} € @ such
that ¥ = —(¢1 A -+ A ¢y). By classical logic, ¥ U {¢1,...,¢,}F Land v U D+ L.
Sincew U® C A, wehave A+ L. Asfor the converse, if each formulain A is consistent
and A isinconsistent then there exists a minimal inconsistent subset @. That is, @ - L.
By classical logic, @ \ {¢p} ¢ — L forany ¢ € @.l.e, @\ {¢} F —¢. Clearly, {¢} and
@ \ {¢} are consistent. Also, there existsaminimal subset ¥ of @ \ {¢} suchthat ¥ - —¢.
So, ({¢}, @) and (¥, —¢) are arguments. Of course, (¥, —¢) isarebuttal for ({¢},¢). O

Corollary 4.19. A is inconsistent if there exists an argument that has at least one
undercut. The converse is true when each formuld is consistent.

As arguments can be ordered from more conservative to less conservative, there is a
clear and unambiguous notion of maximally conservative defeaters for a given argument
(the ones which are representative of all defeatersfor that argument):

Definition 4.20. (¥, 8) is a maximally conservative defeatef (@, «) iff (¥, 8) is a
defeater of (@, o) such that no defeaters of (@, «) are strictly more conservative than
(¥, B) (that is, for all defeaters (¥/, B') of (@, a), if ¥/ C ¥ and B+ B’ thenw C ¥’ and
B+ B).

Theorem 4.21. Let (¥, 8) be a maximally conservative defeater for an argumentx).
Then, (¥, y) is a maximally conservative defeater f@p, «) iff y is logically equivalent
with 8.

11tisalso possible to prove the result directly, in the obvious way.

P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235 213

Proof. We prove the non-trivia part. Let (¥, 8) and (¥, y) be maximally conservative
defeaters for (@,). Applying classical logic on top of the definition of a defeater,
BE—=(@1A--Ady) and y = —(p1 A+ Adn) Where @ = {¢1,...,¢,}. SO, BV y
=(p1 A --+ A ¢,). Now, there exists some minimal ¥/ C ¥ such that ¥' -8 v y (as
Y B and ¥+ y). Moreover, W' t# | because ¥ t# | by definition of a defeater (which
is required to be an argument). Hence, (¥’, 8 v y) isan argument and it is a defeater for
(@, o) aswe have already proven BV y = —(¢1 A --- A ¢,). Dueto &' C ¥, it follows
that (W', B v y) is more conservative than (¥, 8) and (¥,). Since each of thesetwo isa
maximally conservative defeater for (@, o), weaobtain vy pBgand v y - y. Thatis,
B and y arelogicaly equivalent. O

Notice that Theorem 4.21 does not extend to undercuts because they are syntax-
dependent (in an undercut, the consequent is always a formulagoverned by negation).

Theorem 4.22. If (¥, B) is a maximally conservative defeater(df, «) then(¥, 8} is an
undercut of{®, o) for somep’ which is logically equivalent witls.

Proof. Let (¥, B) be adefeater for (@,) such that for all defeaters (W', By of (D,), if
¥’ Ccvand B+ B thenw C ¥’ and B/ - B. By definition of a defeater, B+ —(p1 A - -+
A ¢y) forsome{p1,...,¢,} C @ whilew =B and ¥ I/ L. Then, (W, =(p1 A -+ A ¢p))
is clearly an argument whenever ¥’ is taken to denote a minimal subset of ¥ such that
W' =(p1 A+ Agy). Itisan undercut for (@,). Therefore, it is a defeater for (P, o).
Applying the assumption stated at the start of the proof, ¥ = ¥’ and —=(¢1 A --- A) - B.
So, B is logicaly equivalent with —(¢1 A --- A ¢,) While (&, =(¢1 A -+ A ¢y)) IS an
undercut for (@,). O

Theorem 4.22 suggests to focus on undercuts when synthetizing counter-argumentsto a
given argument as is investigated from now on.

5. Canonical undercuts

Asalready defined above, an undercut for an argument (@, «) isan argument (¥, —(¢1 A
<« A ¢p)) Where{ps, ..., ¢} €@ and @ UW¥ C A by definition of an argument.

While Theorem 4.9 and Theorem 4.22 point to undercuts as candidates to be
representative of all defeaters for an argument, maximally conservative undercuts are even
better candidates.

Definition 5.1. (¥, B) is a maximally conservative undercof (@, «) iff (¥, 8) is an
undercut of (&, «) such that no undercuts of (@, «) are strictly more conservative than
(¥, B) (thatis, for all undercuts (W', B) of (@, a),if ¥/ C ¥ and B+ B’ thenw C ¥’ and
B+ B).

Notice that the consequent of a maximally conservative undercut for an argument is
exactly the negation of the full support of the argument:

214 P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235

Theorem 5.2. If (W, —=(¢1 A --- A ¢,)) IS @ maximally conservative undercut for an
argument{®, a), then® = {¢1, ..., ¢, }.

Proof. Of course, {¢1,...,¢,} C @. Assume that there exists ¢ such that ¢ € @ \
{#1,...,Pn}. Since (@, o) is an argument, @ isaminimal subset of A such that @ + «.
Hence, {¢1,....¢n} IF ¢ and —(¢p NP1 A - A) IF =(d1 A -+ A @n). Now, ¥ =
—(P1A---APy). Then, ¥ I =(p A p1 A -+ A ¢y). SO, there exists ¥/ C ¥ such that
(W', =(pAPLA---Agy)) isanargument. SINCE = (1 A -~ Adn) E=(PAPLA - Adhy),
it followsthat (¥', =(¢p Ap1 A --- A ¢,)) iSmore conservativethan (¥, =(p1 A --- A ¢p)).
Infact, (W', =(dp AL A--- A dy)) isstrictly more conservativethan (W, = (g1 A -+ A ¢p))
because ~(¢p A p1 A --- Agp) I (P A - -+ A). Moreover, (U, ~(p Ap1 A -+~ Adn)) iS
clearly anundercut for (@,) sothat (¥, =(¢1 A - - - A¢,)) beingamaximally conservative
undercut for (@, o) iscontradicted. O

Notethat if (¥, =(¢p1 A --- A ¢,)) iSamaximally conservative undercut for an argument
(@,a), then so are (W, = (g2 A === A A $1)) and (W, =(¢p3 A -+ A dn A 1 A ¢2)) and
so on. However, they are all identical (in the sense that each is more conservative than the
others). We can ignore the unnecessary variants by just considering the canonical undercuts
defined as follows.

Definition 5.3. An argument (¥, =(¢1 A --- A ¢p)) IS a canonical undercufor (@,)
iff it is a maximally conservative undercut for (@, o) and (¢1, ..., ¢,) is the canonical
enumeration of @.

Theorem 5.4. An argument¥, —(¢1 A - - - A ¢p,)) IS @ canonical undercut fofd, «) iff it
is an undercut fof®, o) and (¢, ..., ¢,) is the canonical enumeration df.

Proof. We prove the non-trivial part. Let (¥, —=(¢1 A --- A ¢,,)) be an undercut for
(@, a) such that (¢1, ..., ¢,) isthe canonical enumeration of @. We only need to show
that (¥, —=(¢1 A -+ A ¢,)) is @ maximaly conservative undercut for (@, o). Assume
that (®,—(y1 A -+ A ym)) IS an undercut for (@, «) that is more conservative than
(W, (1 A -+ A @y)). By Definition 4.3, {y1,...,¥Ym} S @. Now, @ = {¢1,...,d,}. It
followsthat —(y1 A - AYm) E—=(d1 A -+ A@y). Hence, ©® = —(¢d1 A -+ A ¢y,) because
(@, =(y1 A -+ A yp)) is an argument. However, ® C ¥ due to the assumption that
(O, =(y1 A -+ A ym)) IS more conservative than (¥, —(¢1 A -+ A ¢y)). Should @ be
a proper subset of ¥, it would then be the case that ¥ is not a minimal subset of A
entailing —(¢1 A - - - A ¢,,) and thiswould contradict the fact that (&, —(¢1 A - -+ A ¢p)) IS
an argument. So, ® = ¥ and it follows that (¥, =(¢1 A --- A ¢,,)) IS more conservative
than (®, =(y1 A--- Ayp)) asweadready proved = (Y1 A -+ Ayp) E—=(p1A---Ady). O

Theorem 5.5. Any two different canonical undercuts for the same argument have the
same consequent, but distinct supports.

Theorem 5.6. Given two different canonical undercuts for the same argument, none is
more conservative than the other.

P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235 215

Proof. In view of Theorem 5.5, it is enough to consider the case of (¥1,—¢) and
(W2, —¢) being two different canonical undercuts for the same argument (&, o). Assume
that (W1, —¢) is more conservative than (¥», —¢). Then, (¥», —¢) is more conservative
than (¥, —¢) because (¥, —¢) is an undercut for (@, @) and (¥, —¢) is a maximally
conservative undercut for (@,). Overall, ¥1 = ¥s. So, (¥, —¢) = (¥o, —¢) and thisisa
contradiction. O

Example5.7. Let A ={a, B, —a, —8}. Both the following

({ma}, ~(a@ A B))
({=B}, ~(a A B))

arecanonical undercutsfor ({«, 8}, @ <> 8), but neither ismore conservativethan the other.

Theorem 5.8. For each defeatetw, g) of an argumen{®, «), there exists a canonical
undercut for(®, «) that is more conservative thaw, g).

Proof. Consider an argument (@,) and write (¢1, ..., ¢,) for the canonical enumeration
of @. Applying Theorem 4.9, it is enough to prove the result for any undercut (¥, —(y1 A
< Aym)) Of (@, «). By Définition4.3, {y1, ..., Ym} S {d1, ..., ®n}. SO, (1A - Aym)
—(P1A---Adp). Then, ¥ = —=(p1A--- A¢y,) because (¥, =(y1 A--- Ayy)) iSan undercut,
hence an argument. Accordingly, there exists a minimal subset ¥/ C ¥ C A such that
¥ = =(p1A---Agy). Moreover, W' isclearly consistent. Therefore, (W, = (g1 A -+ - Adhy))
isan argument. Obviously, it isan undercut for (@, «). Itisacanonical undercut for (@, o)
in view of Theorem 5.4. It is more conservative than (¥, =(y1 A --- A ¥n)) 8 we have
V'Cwand—=(y1 A Aym)E=(@1A-Ady). O

6. Argument trees

An argument tree describes the various ways an argument can be challenged, as well as
how the counter-argumentsto the initial argument can themselves be challenged, and so
on recursively.

Definition 6.1. Anargument tredor « is a tree where the nodes are arguments such that
(1) Therootisan argument for «.
(2) For no node (&, B) with ancestor nodes (@1, B1), ..., (P, Bn) is @ a subset of
D1U---UDy,.
(3) The children nodes of a node N consist of al canonical undercuts for N that
obey (2).

We first give an illustration of an argument tree in Example 6.2 and then we motivate
the conditions of Definition 6.1 as follows: condition (2) is meant to avoid the situation
illustrated by Example 6.3; and condition (3) is meant to avoid the situation illustrated by
Example 6.4.

216 P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235

Example 6.2. Given A = {a,a — B,y,y — —a,—y V —a}, we have the following
argument tree.
({a, 0 = B}, B)
/ N
{y,y = —a}, =(@ A (@ — B))) {y, ~y v -a}, ~(a A (e — B)))

Note the two undercuts are equivalent. They do count as two arguments because they
are based on two different items of the database (even though these items turn out to be
logically equivalent).

We adopt alighter notation, writing (¥, <) for a canonical undercut of (@,). Clearly,
Olis=(p1 A --- A) Where (@1, ..., ¢,) iSthe canonical enumeration for @.

Example6.3. Let A={a,a > B,y — —a, y}.

({a, 0 = B}, B)
T

{y.y = —a}, ©)
T

({a, y = —a}, ©)

Thisisnot an argument tree because the undercut to the undercut is actually making exactly
the same point (that « and y are incompatible) as the undercut itself does, just by using
modus tollens instead of modus ponens.

Example6.4. Given A ={a, B, — y, B — 8, —a VvV =B}, consider the following tree.

({a, B,a =y, B — 8}, y N)
/! N
({a, —a v =B}, =p) ({B, ~a v =B}, —a)

Thisisnot an argument tree because the two children nodes are not maximally conservative
undercuts. The first undercut is essentially the same argument as the second undercut in a
rearranged form (relying on & and 8 being incompatible, assume one and then conclude
that the other doesn’t hold). If we replace these by the maximally conservative undercut
{{—a v =8}, O), we abtain an argument tree.

Thefollowing result isimportant in practice—particularly in light of Corollary 4.12 and
also other results we present in the next section.

Theorem 6.5. Argument trees are finite.

P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235 217

Proof. Since A isfinite, there are only a finite number of subsets of A. By condition (2)
of Definition 6.1, no branch in an argument tree can then be infinite. Also, thereisthen a
finite number of canonical undercuts (Definition 5.3). By condition (3) of Definition 6.1,
the branching factor in an argument treeisfinite. O

Theorem 6.6. If A is consistent, then all argument trees have exactly one node. The
converse is true when no formula ihis inconsistent.

Proof. Apply Corollary 4.19. 0O

Theform of an argument treeis not arbitrary. It summarizesall lines of discussion about
the argument in the root node. Each node except the root node is the starting point of an
implicit series of related arguments. In the next section, we look more closely at the nature
of these related arguments.

7. Duplicates

Equivalent arguments are arguments that express the same reason for the same point.
For undercuts, amore refined notion than equivalent argumentsis useful:

Definition 7.1. Two undercuts (I" U @, =) and (I" U ¥, —¢) areduplicatesof each other
iff pisp1A--- AN, suchthat @ ={¢1,...,¢,} and ¥ iSyY1 A--- Ay, SUuchthat ¥ =
{WI» ceey wm}

Duplicates introduce a symmetric relation which fails to be transitive (and reflexive, as
it is actually antireflexive). Arguments which are duplicates of each other are essentially
the same argument in a rearranged form.

Example 7.2. The two arguments below are duplicates of each other.

({a, ma v =B}, —=B)
({B, ~a Vv =B}, ~a)

Example 7.3. To illustrate the lack of transitivity in the duplicate relationship, the
following two arguments are duplicates,

({y,,any = =B}, —B)
({V, ﬂ,Ol ANy — _'/3}7)

and similarly the following two arguments are duplicates,

(v, B, a ANy — —B}, —a)
(le,any = =BL, =(BAY))

218 P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235
but the following two are not duplicates.

({a,a Ay = =B} =(BAY))
v, a,a Ay — =B}, —B)

Thefollowing theorem shows how we can systematically obtain duplicates. In thisresult,
we see there is an explosion of duplicates for each maximally conservative undercut. This
obvioudly is a potential concern for collating counter-arguments.

Theorem 7.4. For every maximally conservative underqut,) to an argument®, «)
such thatg is logically equivalent with?, there exist at leas?” — 1 arguments each of
which undercuts the undercut: is the size off). Each of thes@” — 1 arguments is a
duplicate to the undercut.

Proof. By Theorem 5.2, 8 is =(¢1 A --- A ¢,) Where @ = {¢1, ..., on). Let ¥ =
{¥1, ..., ¥m}. According to the assumption, ¥ I/ 1 and ¥ isaminimal subset of A such
that

V(LA Adn).

We show the result for each non-empty subset of ¥, which gives us 2" — 1 cases,
considering only {1, ..., ¥} S {¥1,...,¥n} in the proof as the case is clearly the
same for al sets {y1,...,¥,} that can be selected from &l possible permutations
of (Y1, ..., ¥m): We show that ({#1, ..., 0n, Ypi1,-- s ¥mb, ~(Y1 A - A Prp)) IS an
argument.

By the hypothesis {/1,..., ¥m} = —(d1 A -+ A dn), We Qet {¢1,.... 0, Vpit, ...,
Ym} =1 A--- Ayr,) according to classical logic.

If weassume {¢1, ..., ¢n, Ypi1, ..., ¥} L, wewouldget {p11,..., Ym}F —(P1A
<A ¢p). Therefore, ({1, ..., Y}, =(d1 A -+ A ¢y)) would not be an argument because
{Y1, ..., ¥} would not be aminimal subset of A entailing —(¢1 A --- A ¢,,). Thiswould
contradict the fact that (¥, —(¢1 A - -+ A ¢,)) IS an undercut, hence an argument. That is,
we have proventhat {¢1, ..., ¢n, Ypi1, ..., Y} ¥ L.

There only remains to show that {¢1, ..., ¢n, Yp+1, ..., ¥} isaminimal subset of A
for =(y¥1 A --- A ¥p,) to be entailed. We use reductio ad absurdum, assuming that at
least one ¢; or v, is unnecessary when deducing —(1 A --- A ¥,,). In symbols, either
{2, ... Ypt1, s Ymb = (Y1 A AYp) OT {1, ..o s Ypt2, oo Y} = (P2 A
-+ A Yp) (again, al cases are symmetric so it is enough to consider only i = 1 and
j=p+1).

Let usfirst assume {¢1, ..., ¢, ¥pi2, ..., YUm} (Y1 A--- Ap). ASaconseguence,
{1, ...,¥p, VUpy2, ..., Ym} = =(p1 A -+ A ¢). This would contradict {yr1, ..., ¥}
being aminimal subset of A entailing —(¢1 A -+ A ¢y).

Turning to the second case, let usassumethat {¢2, ..., ¢n, Ypi1, ..., Y} =LA - -
AYp). Thus, {Yra, ..., Ym} = =(g2 A Ady). HENCE = (1 A~ - An) E = (2 A -+~ A)
because 8 is logically equivalent with ¥ by the condition in the theorem. It follows that
P2 A APyt d1L Ao APy Asaconsequence, @ = {¢1, ..., ¢,} cannot be a minimal

P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235 219

subset of A entailing @ and this contradicts the definition of an argument as applied to
(D, a).

Either caseyieldsacontradiction, hence no proper subset of {¢1, ..., ¢, Ypt1, ..., Yin)
entalls _'(w:l. ZANERRIVAN Wp) &)1 <{¢1» ey d)nv prrl» ey wm}» _‘(Wl VASRRIVAN ¢p)> IS an
argument and it clearly is an undercut to the undercut.

Verification that it is aduplicate of the undercutisroutine. O

Theorem 7.5. No two maximally conservative undercuts of the same argument are
duplicates.

Proof. Let (F'U®, (a1 A+ Aay)) and (MU O, —(a) A--- Aary,)) betwo maximally
conservative undercuts for (@, B) that are duplicates of each other. Then, ® is logically
equivalent withay A --- A ey, Hence, TUO Faj A--- Ay, While T'UO F—(ag A -
Aay).Accordingto Theorem5.2, @ = {ay, ..., a,} ={a], ...,), }. Thatis a1 A--- Aay
and oy A --- Aa, arelogicaly equivalent. Therefore, I" U ® + L. Thiswould contradict
thefact that I" U ® isthe support of an argument. O

Theorem 7.6. No branch in an argument tree contain duplicates, except possibly for the
child of the root to be a duplicate to the root.

Proof. Assume the contrary: There is (I" U &, —y) which is an ancestor node of
(U, —¢) where @ is{¢1,...,0u}, W is{¥1,...,Ym}, @iSP1 A --- A, and ¢ is
Y1 A -+ A Yy, By definition of an argument tree, (I" U ¥, —¢) isacanonical undercut for
its parent node, whichis (&, a) for some o and which also has (I" U @, —y) asan ancestor
node. Unless (@, «) is the same node as (I" U @, =), this contradicts condition (2) of
Definition 6.1 because @ is of course asubset of I" U @. In case (@, o) coincides with
(r'U @, =y, then I' C @. Also, (@, —) is the parent node for (I" U ¥, —¢). Should
the former not be the root, it has a parent node of the form (¥, 8) for some 8. Therefore,
(¥, B) is an ancestor node of (I" U ¥, —¢). Moreover, (®, =) has already been proven
the parent node for (I" U ¥, —¢) where I' C &@. So, condition (2) of Definition 6.1 isagain
contradicted.? O

These last two results are important. They show that argument trees are an efficient and
lucid way of representing the pertinent counter-argumentsto each argument: Theorem 7.5
showsit regarding breadth and Theorem 7.6 showsit regarding depth. Moreover, they show
that the intuitive need to eliminate duplicates from argument treesis taken care of through
an efficient syntactical criterion (condition (2) of Definition 6.1).

2 Strictly speaking, it is assumed throughout the proof that rewriting (a.canonical enumeration of) asubset of A
into a conjunctive formulais an injective function. Such arestriction is inessential because it only takes an easy
procedure to have the assumption guaranteed to hold.

220 P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235
8. Argument structures

We now consider how we can gather argument trees for and against a point. To do this,
we define argument structures.

Definition 8.1. Anargument structuréor aformula« isapair of sets (P, C) where P is
the set of argument treesfor « and C isthe set of argument trees for —a.

Example 8.2. Let A = {a Vv B,a — y,—y,—B,8 < B}. For this, we obtain three
argument trees for the argument structure for « v —6.

(lav B, =Blav =8 ({6 p,—p}aVv—d)
P 0 0
la=vy,—v}L<) ({avB,a—y,—v}O)

({avp.a =y, —y. 6o Bl ~(aV—d)
¢ t
({=B}. <)
Example83. Lt A={a < B,BVYy,y —> B,—aV =8V -y, y AS,—8}. Fromthiswe
obtain the following argument trees for and against 8 A 8.
({y Né,y = B} BAS)
/ t N
({a & B, —aV—=pV -y, yAd} o) ({=d}, 0) (A\{y né,—6},0)
t
({6}, <)

(la B, —aVv—=BV=y,y A}, ~(BAS))
/! N
{{ly = B}.0) ({8}, 0)

({8}, ~(B A 6))
T
({y Ad}.0)
Theorem 8.4. Let (P,C) be an argument structure. If there exists an argument tree in

P that has exactly one node, théns the empty set. The converse is untrue, even when
assuming thaP is non-empty.

P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235 221

Proof. Assume the contrary: PP contains an argument tree consisting of a single argument
while C is non-empty. Let the single node tree in P be the argument (&,) and let the
root node of the tree in C be the argument (¥, —«). By the definition of a rebuttal and
Theorem 4.6, (¥, —«) isadefeater for (&,). According to Theorem 5.8, there then exists
acanonical undercut for (@, «) and this contradicts the fact that there is an argument tree
consisting only of (®,«). O

Example85. Let A ={aV =8, B, —B}. Inthe argument structure (P, C) for o, we have
that C isthe empty set while P contains an argument tree which has more than one node;

({a v =B, B})
T
({=8}. <)

Example 8.5 illustrates the last sentence in Theorem 8.4. If A isaugmented with o A y
for instance, then (P, C) issuch that 7P contains both an argument tree with more than one
node and an argument tree consisting of just aroot node.

Theorem 8.6. Let (P,C) be an argument structure such th&tis non-empty. IfA is
consistent, then each argument tre¢frhas exactly one node artlis the empty set. The
converse is untrue, even when assuming that each formulaisrconsistent.

Proof. For each argument which is a root node in an argument tree of P, apply
Corollary 4.19. So, we have just proved that each member of P consists of a single
argument. Asfor C being the empty set, it is then enough to apply Theorem8.4. O

The last sentence in the statement of Theorem 8.6 can be illustrated by the following
counter-example.

Example 8.7. Let A = {«, 8, —8}. The argument structure (P, C) for « is such that P
contains a single argument tree consisting of just the root node below:

({a}, @)

In argument structures, P and C are symmetrical. Any property enjoyed by one has a
counterpart, which is a property enjoyed by the other: Both are the same property, with P
and C exchanged. E.g., we have the result similar to Theorem 8.4 stating that if there exists
an argument treein C which has exactly one node, then P isthe empty set. Symmetry goes
even deeper, inside the argument trees of P and C. Thisis exemplified in the next result.

Theorem 8.8. Let([X1,..., X,],[Y1,..., Y,]) be an argument structure. For aryand
any j, the support of the root node & (respectivelyX;) is a superset of the support of a
canonical undercut for the root node &f (respectivelyy;).

222 P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235

Proof. Let (@, «) be the root node of X; and (¥, —«) be the root node of Y;. Then,
®raand¥ - —a. S0, ® U L. Accordingly, ¥ - —¢ where ¢ is¢1 A --- A ¢ and
(@1, ..., ¢r) isthe canonical enumeration of @. Also, ¥ is consistent because (¥, —a) is
an argument. Let ¥’ be a minimal subset of ¥ such that ¥/ + —¢. Then, (¥/, —¢) isan
argument. It clearly isa canonical undercut for (@, «). O

Theorem 8.8 is reminiscent of the phenomenon reported in Corollary 4.10.
Theorem 8.9. Let (P, C) be an argument structure. Then, bdhandC are finite.

Proof. We only provethe result for P. Clearly, no two argument trees have the same root
node. Therefore, all argument trees of P have a different support. So, there can only be as
many argument trees of P as there are subsets of A. These are finitely many because A is
finite. O

Definition 8.10. A categoriseris a mapping from argument trees to numbers. A cate-
gorisation is then a pair of multisets obtained by applying the same categorizer to each
argument tree in an argument structure.

The number assigned by a categoriser is intended to capture the relative strength of an
argument taking into account the undercuts, undercuts to undercuts, and so on. In other
words, it isan attempt to provide an abstraction of an argument tree in the form of asingle
number.

The h-categoriserdenoted , is an example of a categoriser. An argument tree of root
R isassigned anumber i (R) defined recursively by
1
1+h(Np)+ -+ h(N)’
where N1, ..., N; arethe children nodesfor N (if I =0, h(N1) + - -- + h(N;) =0).

h(N) =

Theintuitiveidea about the h-categoriser is that the value of an argument is maximum if
it has no undercuts because the “decrease” is minimum: The more undercuts an argument
has, the lessits value is. Recursively, the value of the argument is minimum if no undercut
has itself an undercut because the “decrease of the decrease” is maximum: The more
undercuts there are to the undercuts of an argument, the more its valueis (al other things
being equal, e.g., the number of undercutsto the argument is fixed).

Definition 8.11. Anaccumulatolis afunction that takes a categorisation for aformula «
and returns a pair of numbers («™, @ ™) where o™ isthe accumulated value for o, and o~
isthe accumulated value against . The balance of the accumulated valuesis calculated as
at —a™.

So, if the balance of accumulated values is O, then the arguments for the formula
“equal” the argumentsagainst the formula. If the balance of accumulated valuesis positive,
then the arguments for the formula are stronger (when aggregated) than the arguments

P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235 223

against the formula, and if the balance of accumulated values is negative, then the
arguments for the formula are weaker (when aggregated) than the arguments against the
formula.

Thelog-accumulatoisan exampleof an accumulator. For acategorisation (X, Y) where
X=[X1,...,X,]JandY =[Yq,..., Y,], define

I(X,Y)) = (log(1+ X1+ -+ X»), 10g(L+ Y1+ - + V).

The idea of the log-accumulator is that the added value contributed by an argument to
the overall value of a set of similar arguments (i.e., which agree with it) is more important
when the set is smaller: The overall value of a couple of similar arguments is intuitively
morethan 2/75 of thevalue of abunch of 75 similar arguments, which inturnisintuitively
much more than 75/100 of the value of a series of 100 similar arguments. More generally,
its makes almost as little difference whether one has hundreds of similar arguments or
thousands while, by contrast, it does make a significant difference whether one has three
similar arguments or only two, and the difference is even bigger whether one has two
similar argumentsor just a single argument.

We do not ascribe any normative or prescriptive dimension to the h-categorizer or the
log-accumulator. We simply want to show that our approach is versatile enough to cope
with various ideas about aggregation, including the possibility to take into account the
number of arguments. Here are two examples.

Example 8.12. Consider the categorisation ([1],[1/2]). Using the log-accumulator
function, we get 0.47 as the balance of the accumulated values. Now consider the
categorisation ([1, 1/2], [1/2, 1/2]). Using the log-accumulator function, we obtain 0.41
as the balance of the accumulated values. So we can see that adding an argument tree of
value 1/2 to both the pro and con sides benefits the con side since initially the con sideis
amuch weaker argument than the pro side.

Example 8.13. For the categorisation ([1/2,1/2], [1]), the log-accumulator function
gives —0.25 as the balance of the accumulated values. Now consider the categorisation
([1/2,1/2,1/2],[1,1/2]). Using the log-accumulator function, we obtain —0.29 as the
balance of the accumulated values. So we can see that adding the argument trees of value
1/2 to both the pro and con sides benefits the con side since initialy the pro side has two
arguments of value 1/2 but the con side has a single argument of value 1 (in particular, we
want an argument to have a more profound effect when confirming a single argument than
when joining a hundred similar arguments which mutually agree).

Through Definition 8.10 and Definition 8.11, there are many possible categoriser and
accumulator functions that could be developed for applications. Furthermore, it may be
possible to devel op particul ar categoriser and accumulator functionsthat conform to either
probabilistic or possibilistic approaches.

We give other examples of categoriser and accumulator functionsin the next section.

224 P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235

9. Comparison with other frameworks

In this section, we compare our framework with other approaches to argument
aggregation. This comparison is conducted largely by showing how a diverse range of
other approachescan be directly incorporated within our framework. To do this, we provide
definitionsfor categoriser and accumulator functions for each of these other approaches.

However, since a number of approaches use a weaker notion of an argument than in
our framework, we need to adapt our definition for an argument. In particular, a number
of argumentation systems use arestricted language—for example alanguage composed of
literals plusrules of the following form where oy, . . ., «,, B areliterals:

LA Aoy —> B

The proof theory for generating arguments in these systems is then just a form of
generalised modus ponens. To show these systems are a special case of our system,
we adopt revised definitions for the language and arguments. Essentially, the languages
allowed are sub-languages of classical logic, and the arguments allowed are those derived
by an appropriate sub-theory of classical proof theory.

9.1. Binary argumentation

Many of the definitions for argumentation are based on an approach that we describe as
aform of binary argumentation. For examples of logics that we view as a form of binary
argumentation, see [10,14,17,18,22,26]. This section is intended to show that this“simple”
form of argumentation can be captured in our framework.

Before giving the appropriate definitions for the categoriser and accumulator functions,
we heed to introduce a few notions.

If A, B and C arethree argumentssuch that A isundercut by B and B is undercut by C
then C iscalled a defence for A. We define the “defend” relation as the transitive closure
of “being adefence”.

An argument tree is said to be successful iff every leaf defendsthe root node.

Definition 9.1. The binary categoriseis a function, denoted s, from the set of argument
treesto {0, 1} such that s(T) = 1iff T is successful.

Definition 9.2. The binary accumulators afunction, denoted b,,, from categorisationsto
theset {(1, 1), (1,0), (0, 1), (0, 0)}. Let (X, Y) be acategorisation, then

ba((X, Y)) = (w(X), w(Y))

wherew(Z) =1iff 1€ Z.

P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235 225

Theresults for the binary accumulator can be given the following interpretation:
(1, 1) meansthe argumentsfor « and —« mutually rebut.
(1, 0) means « follows.
(0, 1) means —« follows.
(0, 0) meansthere are no argumentsfor « or —« that prevail.

Example 9.3. Consider A = {@ <> =8, 8,8 — o,y A =8, -y, 8, —8}. We obtain the
following argument trees for and against «.

{B—a B} a)
/! N
I {y A—=B},0) {8, a < 8}, 0)
1 1
{=r},0) ({6}, <)
({—6, a0 < 8},)
T t
({8},)
({8, ¢ <> =8}, —ar)
T3 /! N
{B, B — a},0) ({6}, ©)
1
{y A—B}.0)
1
{=r} 0

From these trees, applying the binary categorizer gives the following values: s(71) = 1,
s(T2) = 0, and s(T3) = 0. Applying the binary accumulator gives b, ({[1, 0], [0])) =
(w([1, 0], w([0])) = (1, 0). Therefore, « followsfrom A using binary argumentation.

Since the language used for binary argumentation systemsisweaker than classical logic,
we will not provide aformal comparison with our framework here.

9.2. Counting arguments for and against

Whilst most proposals for argument aggregation incorporate some form of binary
aggregation function, there are some proposals for non-binary aggregation functions that

226 P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235

are based on counting the number of arguments for and against a conclusion, and if there
aremoreargumentsfor the conclusion, then the conclusion follows, otherwiseit is defeated
(seefor example[3]). We formalise this approach as follows:

Definition 9.4. The counting categoriserdenoted ¢, is an example of categoriser where
the co-domainis {1}, and so for any argument tree T, ¢(T) = 1.

Definition 9.5. The counting accumulatgienoted ¢,, is an example of an accumulator.
Let ((X1,...,Xnl,[Y1,...,Y,]) beacategorisation, then

ca(([X1, ..., Xnl, [Y1, ..., Y1) = (n, m).

Example 96. Let A = {8 - o,8§ — a,y — —a, B,y,8}. From this, we have two
argumentsfor o and one against, and so the result of applying the counting accumulator is
2,1).

Since the language used for argumentation systems based on counting is weaker than
classical logic, we will not provide aformal comparison with our framework here.

9.3. Comparison with argumentative logics

Argumentative logics [8] overlap with a number of other approaches to reasoning
with maximal consistent subsets of data including [2,21]. We summarize the inferencing
available with some of the key argumentativelogics as follows.

Definition 9.7. Let o beaclassical formulaand let A be aset of classical formulae.

e « is an existential inference from A iff there is a maximal consistent subset of A
where « isaclassical deduction.

e « isunrebuttedinferencefrom A iff thereisamaximal consistent subset of A wherea
isaclassical deduction and thereis no maximal consistent subset of A where —« isa
classical deduction.

e « isauniversal inference from A iff for all maximal consistent subsets of A, « isa
classical deduction.

o « isafreeinference from A iff for the intersection of all maximal consistent subsets
of A, o isaclassical deduction.

In the following subsections, we consider each of these approaches to reasoning with
respect to our framework. For this we require the following two definitions.

Definition 9.8. The unit categorisers a function, denoted ¢, from the set of argument
treesto {1} suchthat ¢(7) = 1linall cases.

Definition 9.9. The unit accumulatoris a function, denoted u,, from the set of
categorisationsto the set {(1, 1), (1, 0), (0, 1), (0, 0)} such that for a categorisation (X, Y)

ua({(X, Y)) = (p(X), p(Y)),
where p(Z) =1iff Z # 0.

P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235 227

9.3.1. Existential inferencing

Theorem 9.10. If applying the unit categoriser to the argument structure doyields
(X, 7Y), thenu is an existential inference from iff u, ((X, Y)) = (1, n) for somen € {0, 1}.

Proof. Let (P, C) be the argument structure for «. Clearly, P contains an argument tree
for « iff there exists a (maximal) consistent subset of A entailing «. By Definition 9.8,
the unit categorisation of (P,C) is (X, Y) where X # ¢ iff P # ¢. By Definition 9.9,
u, (X, Y)) = (4, n) iff X #£0. So, « is an existential inference from A iff u,((X,Y)) =
(1, n) (thevaueof n is0 or 1 depending on whether Y isempty or not). O

9.3.2. Unrebutted inferencing

Theorem 9.11. « is an unrebutted inference from iff u,((X,Y)) = (1, 0) where(X, Y)
results from applying the unit categorizer to the argument structure: for

Proof. Like the proof of Theorem 9.10 for Y = ¢, that is, C = ¢} (behaving like P = ¢
above). O

9.3.3. Universal inferencing

Universal inferencing is difficult to capture in our framework. In universal inferencing
we need to cross-check the consistency of arguments in the different trees. Consider
the following two examples of argument structures for «. The argument structures are
isomorphic, but in the first example « is not auniversal inference, whereasit isa universal
inference in the second example.

Example 9.12. Let A ={B8,8 — a,—B,v,y — a,—y}. Here there are two argument
treesfor a.

({B.B—al.a) ({y.y = a},a)
1 1
{({=8}.©) {{=r}, ©)

For A there are four maximal consistent subsets:

S1{B.B—>a,y,y >}«
S2{B. B>,y > a,~yla
S3{—>a, =By y >}«
S4{f—>a, =B,y > a y}Fa

However, only the maximal consistent subsets S1, Sz, and S3 imply «. Therefore « is not
auniversal inferencefrom A.

228 P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235

Example 9.13. Let A = {8, 8 — o, —B,—8 — «}. Here there are two argument trees
for .

{B.B—a},a) ({=f,~B — a},a)
t 1
({=8}. <) {8}, ©)
For A there are two maximal consistent subsets:
S1{B.B—>a,~f—>alta
S2{=B.~f—>a,p—>a}Fa

So « is a universal inference from A while it is not in Example 9.12, despite similar
argument trees.

Since we need to know whether argumentsfor an inference are mutually consistent, we
need to generalise the definition of a categoriser to be a function from sets of argument
treesto numbers.

9.3.4. Free inferencing

Even though the usual definition of free inferencing is based on maximal consistent
subsets, it can be equivalently defined without recourseto the notion of maximal consistent
subsets.

Definition 9.14. The free categoriseis a function, denoted r, from the set of argument
treesto {0, 1} such that »(T) = 1iff T isjust aroot node.

Definition 9.15. The free accumulatoris a function, denoted f,, from the set of
categorisationsto the set {(1, 1), (1, 0), (O, 1), (0, 0)} such that for a categorisation (X, Y)

fa((X, 7)) = (w(X), w(Y)),
wherew(Z) =1iff le Z.

Theorem 9.16. Let (X, Y) result from applying the free categoriser to the argument
structure fora. Thenw is a free inference fromi iff f,((X, Y)) = (1, 0).

Proof. (Only if part) Assume that f,((X, Y)) = (1, n) where (X, Y) is the free categori-
sation obtained from (P, C) (the argument structure for @) and n is some value in {0, 1}.
There then exists an argument tree consisting of asingle node of the form (@, «) (cf. Defi-
nition 9.14 and Definition 9.15). This meansthat (@, «) has no canonical undercut, hence
no undercut (cf. Theorem 5.8). That is, thereisno ¥ C A suchthat ¥ I/ 1| and ¥ - —¢
where ¢ is logicaly equivalent with @. Thus, thereisno ¥ C A such that ¥ t# | and
¥ U {¢p}+ L. Accordingly, @ U ¥ is consistent whenever ¥ is a consistent subset of A.
By definition of a maximal consistent subset, it follows that whenever ¥ is a maximal
consistent subset of A then ¥ =@ U W, that is, @ C . Therefore, @ is a subset of the

P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235 229

intersection of all maximal consistent subsets of A. Since (@, «) is an argument, @ + «
which then meansthat « isafreeinferencefrom A.

(If part) Let A denote the intersection of all maximal consistent subsets of A. Assume
that « is a free inference from A. Therefore, A - «. There exists @, a subset of A
(hence, A) minimal with respect to entailing « (so that @ - «). Also, @ I/ 1 (as A is
the intersection of all maximal consistent subsets of A). As a consequence, (@, «) isan
argument. Assumefurther that (@, o) hasat least oneundercut. That is, thereexists ® C A
such that ® I/ 1 and ® - —¢ where ¢ islogicaly equivalent with @. Clearly, ® can be
extended to a maximal consistent subset of A, say 2. So, 2 I L and 2 - —¢. The latter
amountsto 2 U {¢} - L, or equivalently, 2 U @ - 1. However, @ is contained in the
intersection of al maximal consistent subsets of A so that 2 = £ U @ holds and yields
2 + L from which a contradiction arises. That is, there exists no undercut for (@,). So,
P contains at least the argument tree consisting of the single node (@, «). By Theorem 8.4,
applying Definition 9.14 and Definition 9.15 then yieldsthe result. O

9.4. Comparison with Dung’s system
Here we consider Dung's system for argumentation [7].

Definition 9.17. A Dung argumentation framewoik a pair A = (I", A) where I" isa set
(whose elements play the role of arguments) and A € I" x I" (intuitively, A is an “ attack”
relation between arguments).

Superficially, an argument structure could be viewed as an argument framework in
Dung’'s system. An argument in an argument tree could be viewed as an argument in a
Dung argumentation framework, and each arc in an argument tree could be viewed as an
attack relation. However, the way sets of arguments are compared is different.

Definition 9.18. A subset S of I" is conflict-freeif there are no two elements X, Y in S
suchthat X AY or Y AX.

Definition 9.19. An element X in I is acceptablawvith respect to a subset S of I iff for
eaxchY e I',if YAX, then ZAY forsome Z € S.

Definition 9.20. A conflict-free subset S € I' is admissibleiff each element in S is
acceptable with respect to S.

Definition 9.21. A preferred extensionf an argumentation framework A = (I", A) isa
maximal (with respect to set inclusion) admissible subset of I".

Some differences between Dung's approach and our approach can be seen in the
following examples.

Example 9.22. Consider a set of arguments {a1, az, as, a4} with the attack relation A
such that ap Aa1, aszAaz, asAaz, and a1 Aag. Here thereis an admissible set {a1, az}. We

230 P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235

can try to construct an argument tree with a1 at the root. As a counterpart to the attack
relation, we regard that a; is undercut by az, az is undercut by a3, and so on. However,
the corresponding sequence of nodes a1, az, as, as, aj iSnot an argument tree because a1
occurs twice in the branch (violating condition (2) of Definition 6.1). So, the form of the
argument tree for a1 failsto represent the fact that a; attacks ag.

Example9.23. Let A = {8, 8 — «, § A—8, =5 A}, giving the following argument tree
for .

(8. p —)
/ N
(6 A=) ©) (=6 A =B} ©)
1 1
(=5 A =8). ©) (5 A=), ©)

Disregarding the difference between the occurrences of ¢, this argument tree rewrites as
az2Aai, aszAai, azAaz, and az Aaz where a; denotes the root node ({8, 8 — «}, @). In
this argument tree, each defeater of the root node is defeated. Yet no admissible set of
arguments contains as .

Furthermore, we can show that Dung’s approach is fundamentally different to our
approach. We can formalise this as follows. First, for our approach, we have the following
reguirement;

That an argument A attacks an argument A’ means that the reasons of A
contradict (in the sense of classical logic) some subset of the reasons of A’.

Clearly, the definitions for our framework that we have given in this paper meet this
reguirement. However, in the following result, we see that assuming this requirement in
the context of Dung's framework causes a collapse. To formalise this, we rewrite the
reguirement as a constraint on the attack relation as follows:

XAY iff Ry UR'F L for some R’ € Ry (Constraint 1)
where Ry (respectively Ry) isthe set of reasonsin X (respectively the set of reasonsin Y).

Theorem 9.24. In any instance of Dung’s framework where Constrdinholds, every
argument is acceptable with respect to itself, and therefore every conflict-free set of
arguments is admissible.

Proof. We show that X is acceptablewith respect to SU{X}. So, consider Y € I" such that
YAX. Thatis, Ry UR"” I 1 for some R” C Rx. Then, Ry U Rx - L holds. Therefore,
Rx UR L for R' = Ry.Hence, X AY holds. O

In order to make sense, Dung’s argumentation system demands the attack relation to be
asymmetric although such arequirement is not stated at all in the original definitions. What

P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235 231

is stated is only a definition of well-founded argumentation (with the outcome of having a
single preferred extension) but well-founded actually means that the transitive closure of
the attack relation is antisymmetric.

Of course, one could consider a variant of Dung's definition as follows. X € I is
acceptablewith respect to S iff foreach Y € I', if Y AX then Z.AY for some Z € S where
Z # X. But then an argument can never defend itself. Thus, no singleton set of arguments
isadmissible.

Even though an abstract view of the notion of attacks between arguments may intuitively
imposeit asan asymmetric relation, such anintuitioniswrong as Constraint 1 yieldsaquite
natural symmetric attack relation.

10. Argumentation with structured newsreports

Argumentation has a wide range of application domains, one of which is news reports.
Intelligent agents constantly need not only to absorb new information but also to consider
the ramifications of it and this implicitly calls for argumentation for identifying pros and
cons of various ramifications holding. In the following, we consider the application of
argumentation to reasoning with news reportsin the form of structured text.

Structured text is an idea implicit in a number of approaches to handling information
such as news reports. An item of structured text is a set of semantic labels together with
aword, phrase, sentence, null value, or a nested item of structured text, associated with
each semantic label. As a simple example, a report on a corporate acquisition could use
semantic labels such as “buyer”, “seller”, “acquisition”, “value”, and “date”.

We assume that news reports are represented as structured text (e.g., in XML or in semi-
structured data[1,4] or in atemplate output from an information extraction system [6,11])
where the text entries are individual words, numbers or very simple phrases. Trials of
information extraction systems have been undertaken using various news corporaincluding
news reports and status reports on countries. In Fig. 1, we give a simple example, of the
kind of structured text that might be generated by an information extraction system. Since
information extraction can incorporate sophisticated lexical information, the output can
be given using preferred terms. For example, for G | Pri ce, there may be a number of
ways of stating that the oil price isincreasing, but it may be preferable to reduce all these
aternativesto theentry i ncr easi ng.

Anitem of structured text such as givenin Fig. 1, can be systematically trandated into a
set of literals. For details on the process and viability of this see [15,16]. For example, we
may represent it asfollows:

ng Count ry:x

n1 Dat e:30 May 2000

np Gover nrent :unst abl e
n3 Denpcr acy:strong

ngq Publ i cSpendi ng:excessi ve

232 P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235

ns Si gni fi cant Export :oi |
ng O | Price:i ncreasing
ny Last El ecti onir ecent

ng Currency:strong

In the domain knowledge we may have numerous formulae that capture possible
ramifications of news reports. For illustrations of how some of this domain knowledge
might be acquired see [9]. For example, we may have the following formulae.

dip Gover nnent :unstabl e —credi t-ri sk

do Denocracy:strong A Last El ecti onirecent —
—Gover nnent :unst abl e

d3 Publ i cSpendi ng:excessive —credit-risk

dsCurrency:strong — —credit-risk

ds Si gni ficant Export:oil AQ | Price:increasi ng—

—Publ i cSpendi ng:excessi ve

Given a structured news report represented by a set of literals, and a set of formulae
representing domain knowledge, we can construct argument structures for ramifications of
interest. The argument trees, and the resulting aggregation, provide ameans for laying out
the relevant facts in the news reports, and associations with the domain knowledge.

(Count ryReport)
(Country) x (/Country)

(Dat e) 30 May 2000 (/Dat e)

(Gover nnent) unst abl e (/Gover nnent)

(Denmocr acy) st rong (/Denpcr acy)

(Publ i cSpendi ng) excessi ve (/Publ i cSpendi ng)
(SignificantExport)oil (/Significant Export)
(O I Price)increasing (/G 1Price)

(Last El ection)recent (/LastEl ection)
(Currency)strong (/Currency)

(/Count ryReport)

Fig. 1. An example of asimple news report in the form of structured text using XML notation.

P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235 233

Now assume the database to be A = {no, ..., ng, ds, ..., ds}. From this we obtain the
following argument trees for and against the inferencecr edi t - ri sk.

{{n2,d1},credit-risk)

/ N
({n3, n7,d2},) ({ns, da}, ©)
T
({na, ds}, o)
T

({ns, ne, ds}, ©)

({na,ds},credit-risk)

/! N

({ns, ne, ds}, o) ({ns, da}, o)
0

({n2, d1}, o)
T

({n3, n7, dz}, o)

{{ng, da}, —credit-risk)

/ N
({n2,d1},) ({na, ds}, ©)
1 T
({n3, n7, d2}, 0) ({ns, ne, ds}, ©)

Given the simple nature of the database (i.e., the literals obtained from the news report
together with the domain knowledge), we see that each tree is a different arrangement of
the same set of arguments. However, we stressthat each treeis a stand-al onerepresentation
of the set of argumentsfrom a particular perspective and so it is necessary to have all these
trees.

11. Discussion

In this paper, we have proposed a new framework for modelling argumentation. The
key features of this framework are the clarification of the nature of arguments and
counter-arguments, the identification of canonical undercuts which we argue are the only
defeaters that we need to take into account, and the representation of argument trees and

234 P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235

argument structures which provide away of exhaustively collating argumentsand counter-
arguments.

Thisframework can be viewed as ageneralization of awiderange of existing approaches
to argument aggregation. Moreover, non-binary argument aggregation offers a more
realistic approach to weighing up the relative merits of argumentsfor and against apossible
conclusion. Furthermore, there is a range of possible applications of this framework
in reasoning with potentialy inconsistent information. These include reasoning with
inconsistent specifications[12,13], and inconsistent structured text [15,16].

In order to use the framework more generaly, we may wish to differentiate the
information in A from some background knowledge X~ where we assume that X is
uncontroversial knowledge that can be taken for granted and A is controversial knowledge
that needs to be regarded as questionable. We can then generalize our definition of the
consequence relation - to that of a consequence relation +x where inferences can be
derived with the benefit of the formulaein X.

Finally, we consider capturing a class of arguments that fail to be deductive. For this,
the basic principle for our approach still applies: An argument comes with a claim, which
relies on reasons by virtue of some given relationship between the reasons and the claim.
So, arguments can till be represented by pairs but the relationship is no longer entailment
inclassical logic, it isabinary relation of somekind capturing “tentative proofs’ or “ proofs
using non-standard modes of inference” instead of logical proofs. This relationship can be
taken to be almost whatever pleases you provided that you have a notion of consistency.
Observe that this does not mean that you need any second element of a pair to stand
for “absurdity”: You simply have to specify a subset of the pairs to form the cases of
inconsistency. Similarly, our approach is not necessarily restricted to a logical language
and another mode of representation can be chosen.

Acknowledgements

This work has been partly funded by the ESPRIT Fusion Project. The authors are
grateful to Peter McBurney, Yves Moinard and Gerald Vreeswijk for their comments on
an early version of this paper.

References

[1] S. Abiteboul, Querying semi-structured data, in: Proc. 6th International Conference on Database Theory
(ICDT’97), Lecture Notesin Computer Science, Vol. 1186, Springer, Berlin, 1997, pp. 1-18.

[2] S.Benferhat, D. Dubois, H. Prade, Argumentative inference in uncertain and inconsistent knowledgebases,
in: Proc. 9th Conference on Uncertainty in Artificial Intelligence (UAI’93), Morgan Kaufmann, San Mateo,
CA, 1993, pp. 485-491.

[3] A.Borgida, T. Imielinski, Decision making in committees—A framework for dealing with inconsistency and
non-monotonicity, in: Proc. 1st Non-Monotonic Reasoning Workshop, New Paltz, NY, 1984, pp. 21-31.

[4] P. Buneman, Semistructured data, in: Proc. 16th ACM Symposium on Principles of Database Systems
(PODS 97), ACM Press, New York, 1997, pp. 117-121.

[5] C. Chesnevar, A. Maguitman, R. Loui, Logica models of argumentation, ACM Computing Surveys,
to appear.

P. Besnard, A. Hunter / Artificial Intelligence 128 (2001) 203-235 235

[6] J. Cowie, W. Lehnert, Information extraction, Comm. ACM 39 (1996) 81-91.

[7] P. Dung, On the acceptability of arguments and its fundamenta role in nonmonotonic reasoning, logic
programming and n-person games, Artificial Intelligence 77 (1995) 321-357.

[8] M. Elvang-Goransson, A. Hunter, Argumentative logics: Reasoning from classically inconsistent informa-
tion, Data and Knowledge Engineering J. 16 (1995) 125-145.

[9] A. Fisher, The Logic of Real Arguments, Cambridge University Press, Cambridge, UK, 1988.

[10] P. Geerts, E. Laenens, D. Vermeir, Defeasible logics, in: Handbook of Defeasible Reasoning and Uncertainty
Management Systems, Vol. 2: Reasoning with Actual and Potential Contradictions, Kluwer, Dordrecht,
1998, pp. 175-210.

[11] R. Grishman, Information extraction techniques and challenges, in: M. Pazienza (Ed.), Information
Extraction, Springer, Berlin, 1997.

[12] A. Hunter, B. Nuseibeh, Analysing inconsistent specifications, in: Proc. 3rd IEEE International Symposium
on Requirements Engineering (RE’ 97), IEEE Computer Society Press, 1997, pp. 78-86.

[13] A. Hunter, B. Nuseibeh, Managing inconsistent specifications: Reasoning, anadysis and action, ACM
Transactions on Software Engineering and Methodology 7 (1998) 335-367.

[14] J. Horty, R. Thomason, D. Touretzky, A skeptical theory of inheritance in nonmonotonic semantic networks,
Artificia Intelligence 42 (1990) 311-348.

[15] A. Hunter, Merging inconsistent items of structured text, Data and Knowledge Engineering 34 (2000) 305—
332

[16] A. Hunter, Reasoning with inconsistency in structured text, Knowledge Engineering Review 15 (2000) 317—
337.

[17] D. Nute, Defeasible logics, in: Handbook of Logic in Artificial Intelligence and Logic Programming, Vol. 3:
Nonmonotonic Reasoning and Uncertainty Reasoning, Oxford University Press, Oxford, 1994, pp. 355-395.

[18] J. Pollock, How to reason defeasibly, Artificial Intelligence 57 (1992) 1-42.

[19] H. Prakken, Logica Tools for Modelling Legal Arguments, Kluwer, Dordrecht, 1997.

[20] H. Prakken, G. Vreeswijk, Logica systems for defeasible argumentation, in: Handbook of Philosophical
Logic, 2nd edn., Kluwer, Dordrecht, to appear.

[21] N. Rescher, R. Manor, On inference from inconsistent premisses, Theory and Decision 1 (1970) 179-217.

[22] G. Simari, R. Loui, A mathematical treatment of defeasible reasoning and its implementation, Artificial
Intelligence 53 (1992) 125-157.

[23] S. Toulmin, The Uses of Argument, Cambridge University Press, Cambridge, UK, 1958.

[24] B. Verheij, Automated argument assistance for lawyers, in: Proc. 7th International Conference on Artificial
Intelligence and Law, ACM Press, New York, 1999, pp. 43-52.

[25] G. Vreeswijk, Abstract argumentation systems, Artificial Intelligence 90 (1997) 225-279.

[26] G. Wagner, Ex contradictione nihil sequitur, in: Proc. IJCAI-91, Sydney, Australia, Morgan Kaufmann, San
Mateo, CA, 1991, pp. 538-546.

