
 1

70th anniversary of publication: Warren
McCulloch & Walter Pitts - A logical calculus

of the ideas immanent to nervous activity

Vladimír KVASNIČKA a Jiří POSPÍCHAL1

Abstract. In 1943 was published a paper of Warren McCulloch &
Walter Pitts entitled „A logical calculus of the ideas immanent to
nervous activity“, which is now considered as one of the seminal
papers that initiated the formation of artificial intelligence and
cognitive science. In this paper, concepts of logical (threshold)
neurons and neural networks were introduced. There was proved that
an arbitrary Boolean function may be represented by a feedforward
(acyclic) neural network composed of threshold neurons, i. e. this type
of neural network is a universal approximator in the domain of
Boolean functions. Later, S. Kleene and N. Minsky extended this
theory by a study of relationships between neural networks and finite
state machines (Mealy automata). They proved two important
theorems. The first one claims that for an arbitrary neural network
(composed of logical neurons) there exists an equivalent finite state
machine. In a similar way, the second theorem claims that for an
arbitrary finite state machine there exists an equivalent recurrent
neural network. From these important properties it immediately
follows that symbolic and subsymbolic approaches to the study of
cognitive properties of human mind are mutually equivalent.

1 Introduction and basic concepts

Logical neurons and neural networks were initially studied in 1943 by Warren
McCulloch and Walter Pitts´s paper [6] „A logical calculus of the ideas
immanent to nervous activity", which is considered as a milestone of
connectionist metaphor in artificial intelligence and cognitive science. This
paper demonstrated that neural networks are universal approximators for a
domain of Boolean functions, i. e. an arbitrary Boolean function can be
represented by a feedforward neural network composed of threshold neurons.
But, we have to mention from the very beginning that this work is very difficult
to read, its mathematical-logical part was probably written by Walter Pitts, who

1 Faculty of informatics and information technologies, Slovak Technical University in
Bratislava, Ilkovičova 3, 812 19 Bratislava, E-mail: kvasnicka@fiit.stuba.sk,
pospichal@fiit.stuba.sk.

 2

was in both sciences total autodidact. Thanks to logician S. Kleene [3] and
computer scientist M. Minsky [7,8] this work has been “translated” at the end
of fifties into a form using standard language of contemporary logic and
mathematics and its important ideas became generally available and accepted.

Figure 1. Warren McCulloch (1889 - 1969) and Walter Pitts (1923 - 1969)

An elementary unit of neural networks is threshold (logical) neuron of

McCulloch and Pitts. It has two binary values (i. e. either state 1 or state 0). It
may be interpreted as a simple electrical device - relay. Let us postulate that
a dendritic system of threshold neuron is composed of excitation inputs
(described by binary variables x1, x2, ..., xn, which amplify an output response)
and inhibition inputs (described by binary variables xn+1, xn+2, ..., xm, which are
weakening an output response), see fig. 2.

x1

y

dendritic input system

exitation inputs soma of neuron

inhibition inputs

axon - output
xn+1

xn

ϑ
xm

Figure 2. Diagrammatic visualization of McCulloch and Pitts neuron, which is composed of
dendritic system for information input (excitation or inhibition) activities, and axon for
information output. A body of neuron is called the soma, it is specified by a threshold coefficient
ϑ.

 3

An activity of threshold neuron is set to one, if the difference between a
sum of excitation input activities and a sum of inhibition activities is greater
than or equal to the threshold coefficient ϑ, otherwise it is set to zero

()
()

1 1

1 1

1

0
n n m

n n m

x ... x x ... x
y

x ... x x ... x
+

+

+ + − − − ≥ ϑ⎧⎪= ⎨
+ + − − − < ϑ⎪⎩

 (1)

If we introduce a simple step function

()
()
()

1 0

0 <0
s

ξ ≥⎧⎪ξ = ⎨
ξ⎪⎩

 (2a)
then an output activity may be expressed as follows:

1 1n n my s x ... x x ... x+

ξ

⎛ ⎞
⎜ ⎟= + + − − − − ϑ
⎜ ⎟
⎝ ⎠
14444244443

 (2b)

An entity ξ is called the internal potential. This relation (2) may be alternatively
interpreted such that excitation activities are incoming to the neuron through
connections evaluated by positive unit weight coefficients (w = 1), whereas
inhibition activities are incoming through connections evaluated by negative
unit weight coefficients (w = -1). Then an activity of neuron may be expressed
by a simple formula

1 1
1

m

m m i i
i

y s w x ... w x s w x
=ξ

⎛ ⎞ ⎛ ⎞⎜ ⎟= + + − ϑ = − ϑ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑1442443

 (3)

where weight coefficients are specified by
()
()
()

1

1

0
ij

connection j i is of excitation character

w connection j i is of inhibition character

connection j i is nonexisting

→⎧
⎪

= − →⎨
⎪ →⎩

 (4)

In a neural network, weight coefficients are fixed and they are determined by
a topology of syntactic tree, which specifies a given Boolean function.

 Let us note that the above mentioned simple principles (1-4) “all or
none” for neurons have originated in late twenties and early thirties of former
century by English physician and electro-physiologist Sir E. Adrian, when he
studied output neural activities by making use, in that time, of very modern
electronic equipment based on electron-tube amplifiers and cathode-ray tubes
for a visualization of measurements.

In the original paper McCulloch and Pitts [6] have discussed
a possibility that inhibition is absolute, i. e. any active inhibitory connection
forces the neuron into the inactive state (with zero output state). The paper itself

 4

shows that this form of inhibition is not necessary, and that „subtractive
inhibition“ based on formulae (1-4) gives the same results.

Simple implementations of elementary Boolean functions of
disjunctions, conjunctions, implication, and negation are presented in fig. 3. Let
us study a function of disjunction for n = 2, if we use formulae (1-2) we get

() ()1 2 1 2 1ORy x ,x s x x= + − (5)
Functional values of this Boolean function are specified in tab. 1. It immediately
follows from this table that a function yOR simulates Boolean function of
disjunction

Table 1. Disjunctive Boolean function
x1 x2 yOR(x1,x2) x1∨ x2
1 0 0 s(-1) 0
2 0 1 s(0) 1
3 1 0 s(0) 1
4 1 1 s(1) 1

......

x1

y = x ... x1∨ ∨ n y = x ... x1∧ ∧ n

y = x x1 2⇒

xn

1 n

0

Boolean function
of disjunction

......

x1

xn

y y

y

y = x¬

0x y
x1

x2

Boolean function
of conjuction

Boolean function
of implication

Boolean function
of negation

Figure 3. Three different implementations of threshold neurons, which specify Boolean
functions of disjunction, conjunction, implication, and negation, respectively. Excitatory
connections are terminated by black dot whereas inhibition connections by open dots.

2 Boolean functions
Each Boolean function [5,8] is represented by a syntactic tree (derivation tree),
which represents a way of its recurrent building, going bottom up, initiated by

 5

Boolean variables and then terminated (at a root of tree) by a composed
Boolean function (formula of propositional logic), see fig. 4, diagram A.
Syntactic tree is a very important notion for a construction of its subformulae,
each vertex of tree specifies a subformula of the given formula: lowest placed
vertices are assigned to trivial subformulae p and q, forthcoming two vertices
are assigned subformulae p q⇒ and p q∧ , highest placed vertex – root of the
tree – is represented by the given formula () ()p q p q⇒ ⇒ ∧ .

p q p q p q p q

0

0 2

A B
Figure 4. (A) Syntactic tree of a Boolean function (propositional formula) () ()p q p q⇒ ⇒ ∧ .
Bottom vertices correspond to Boolean variables (propositional variable) p and q, vertices from
the next levels are assigned to connectives implication and conjunction, respectively. An
evaluation of the syntactic tree runs bottom up. (B) Neural network composed of logical
neurons of connectives, which appear in a given vertex of the syntactic tree of diagram A. We
see that between syntactic tree and neural network these exists very closed one-to-one
correspondence, their topologies are identical, they are different only in vertices. Pictorially
speaking, we may say that a neural network representing a Boolean function ϕ can be
constructed from its syntactic tree by direct substitution of its vertices by proper logical
neurons.

 We see that for an arbitrary Boolean function we may simply construct a
neural network, which simulates functional value of the Boolean function, see
fig. 4, where this process is outlined for formula () ()p q p q⇒ ⇒ ∧ . It means
that these results may be summarized in a form of a theorem.

Theorem 1. Each Boolean function, represented by a syntactic tree, can be
alternatively expressed in a form of neural network composed of logical
neurons that correspond to connectives from the given formula.

This theorem belongs to basic results of the seminal paper of McCulloch
and Pitts [xx]. It claims that an arbitrary Boolean function represented by a
syntactic tree, may be expressed in a form of neural network composed of
simple logical neurons that are assigned to logical connectives from the tree. It

 6

means that neural networks with logical neurons are endowed by an interesting
property that these networks have a property of universal approximator in a
domain of Boolean functions. The above outlined constructive approach based
on an existence of syntactic tree for each Boolean function is capable of
accurate simulation of any given Boolean function.

Figure 5. A logic neuron for simulation of an arbitrary conjunctive clause, which is composed
of propositional variables or their negations that are mutually connected by conjunctions,

1 1n n my x ... x x ... x+= ∧ ∧ ∧ ¬ ∧ ∧ ¬ .

 Architecture of neural network based on the syntactic tree, which is
assigned to an arbitrary Boolean function, may be substantially simplified to the
so-called 3-layer neural network composed of

(1) a layer of input neurons (which copy input activities, they are not
computational units),

(2) a layer of hidden neurons, and
(3) a layer of output neurons;

where neurons from two juxtaposed layers are connected by all possible ways
by connections. This architecture is a minimalistic and could not be further
simplified. We demonstrate a constructive way how to construct such a neural
network for an arbitrary Boolean function.
 Applying simple generalization of the concept of logical neuron, we
may immediately show that a single logical neuron is capable of simulating a
conjunctive clause 1 1n n mx ... x x ... x+∧ ∧ ∧ ¬ ∧ ∧ ¬ , see fig. 5. This Boolean
function is true only for variables satisfying 1 1nx ... x= = = and

1 0n mx ... x+ = = = , for all other cases of variables its truth value is 0 (false)

()
()
()

0
1 1

0

1

0n n m

pre
val x ... x x ... x

preτ +

τ = τ⎧⎪∧ ∧ ∧ ¬ ∧ ∧ ¬ = ⎨
τ ≠ τ⎪⎩

 (6)

where ()0 1 11 1 0 0n n mx ,...,x ,x ,...,x+τ = is a specification of truth values of
variables. It can be easily verified that this conjunctive clause is simulated by
logical neuron illustrated in fig. 5, its output activity is determined by simple
formula

 7

 ()1 1n n my s x ... x x ... x n+= + + − − − − (7)
Its functional value is equal to 1 if and only if

1 1n n mx ... x x ... x n++ + − − − ≥ (8)
This simple condition is achieved if the first n input (excitation) variables are
equal to 1 and further (m-n) input (inhibition) variables are equal to 0.

Table 2. Functional values of a Boolean function.

x1 x2 x3 ()1 2 3y f x ,x ,x= clause
1 0 0 0 0 -
2 0 0 1 0 -
3 0 1 0 1 1 2 3x x x¬ ∧ ∧ ¬

4 0 1 1 1 1 2 3x x x¬ ∧ ∧
5 1 0 0 0 -
6 1 0 1 1 1 2 3x x x∧ ¬ ∧
7 1 1 0 0 -
8 1 1 1 0 -

In the theory of Boolean functions is proved very important theorem that

each Boolean function may be equivalently written in a form of disjunctive
normal form [5,8]

()()

() () ()
1 2

1

n

val

x x ... x

τ

τ τ τ

τ
ϕ =

ϕ = ∧ ∧ ∧Î (9)

where

() ()()
()()

if 1
if 0

i i
i

i i

x val x
x

x val x
τ τ

τ

⎧ =⎪= ⎨¬ =⎪⎩
 (10)

In order to illustrate this theorem let us study a Boolean function with
functional values specified in tab. 2, where in its rows 3, 4 and 6 are "one" (true)
values and in all other rows the function is false. Applying formula (9) we get an
„analytic“ form of the given Boolean function specified initially by tab. 2

() () () ()1 2 3 1 2 3 1 2 3 1 2 3y f x ,x ,x x x x x x x x x x= = ∧ ∧ ∨ ∧ ∧ ∨ ∧ ∧ (11)
This Boolean function may be further simplified in such a way that the first and
second clauses are simplified

() () ()1 2 3 1 2 3 1 2 3 3 1 2

1

x x x x x x x x x x x x∧ ∧ ∨ ∧ ∧ = ∧ ∧ ∨ = ∧
14243

 (12)

Then a final “analytic” form of the studied Boolean function is

 8

() () ()1 2 3 1 2 1 2 3y f x ,x ,x x x x x x= = ∧ ∨ ∧ ∧ (13)

 Summarizing our considerations, a clause () () ()
1 2 nx x ... xτ τ τ∧ ∧ ∧ may be

expressed by single logical neuron, see fig. 5. Outputs from these neurons are
mutually connected by a neuron, which represents a disjunction (see fig. 3). A
final form of the Boolean function (11) is outlined in fig. 6. Results of this
illustrative example may be summarized in a form of the following theorem.

Theorem 2. An arbitrary Boolean function f can be simulated by a 3-layer
neural network.

y1

1

2

2

y1

x1

1

2

x2

x3

x1

x2

x3

Figure 6. The 3-layer neural network, which simulates Boolean function specified by tab. 2,
hidden neurons represent single conjunctive clauses specified in tab. 2, their disjunction is
realized by single output “disjunctive” neuron. This neural network may be further simplified in
such a way that the first two clauses are combined into a simpler conjunctive clause, see (12-13).

....

hidden
onsneur

output
oneur n

 input
onsneur

Figure 7. A schematic outline of 3-layer neural network. Going from the left to right, first
comes an input layer, which is not a calculating device. The second layer is composed of hidden
neurons, which represent single conjunctive clauses of the given Boolean function. The third
(last) layer is composed of single output neuron, which performs an addition (disjunction) of
activities produced by hidden neurons.

A general form of the 3-layer neural network is illustrated by fig. 7.

 9

We have to note, that according to the theorem 2, the 3-layer neural
networks composed of logical neurons are a universal computational device for
a domain of Boolean function; each Boolean function may be represented by
this “neural device” called the neural network. This fundamental result of
McCulloch and Pitts’ paper [6] preceded modern result from the turn of the
eighties of last century, after which 3-layer feed-forward neural networks with a
continuous activation function are a universal approximator of continuous
functions specified by a table of functional values [3,12,13]. Moreover, since the
proof of theorem 2 was realized in a constructive manner, we know a simple
systematic approach how to construct this neural network for an arbitrary
Boolean function. Unfortunately, an optimal form of the constructed neural
network is not solved by the theorem 2. In general, there may exist a neural
network composed of smaller number of hidden neurons than the one
constructed in the systematic manner from the proof of theorem 2. In the theory
of Boolean function, many optimization methods have been elaborated to
achieve a “minimal” form of the given Boolean function (e. g. Quin and
McCluskey’s method [5]). If such an optimization technique is applied in our
considerations how to construct a neural network for an arbitrary Boolean
function, we arrive at an interesting constructive method that produces neural
network composed of minimal number of logical neurons.

x1

x2

obje 0cts evaluated by

hyperplane

obje t 1c s evaluated by

Figure 8. An illustrative outline of the concept "linear separability", where round (square)
objects are separated by a hyperplane w1x1+...+wnxn-ϑ = 0 such that in the first half-space there
are situated objects of one kind, whereas in the second half-space there are situated objects of
another kind.

We may put a question what kind of Boolean functions a single logical

neuron is capable to classify correctly [7,3]? This question may be relatively
quickly solved by geometric interpretation of computations running in logical
neuron. In fact, logical neuron divides an input spaces onto two halfspaces by a

 10

hyperplane w1x1 + w2x2 +...+ wnxn = ϑ, for weight coefficients wi=0,±1. Then we
say that a Boolean function f(x1, x2,..., xn) is linearly separable, if and only if
there exists such a hyperplane w1x1 + w2x2 + ...+ wnxn = ϑ, which separates a
space of input activities in such a way that in the first part of space are situated
objects evaluated by 0, whereas in the second part of space are situated objects
evaluated by 1 (see fig. 8).

Theorem 3. Logical neurons are capable to simulate correctly only those
Boolean functions that are linearly separable.

 A classical example of a Boolean function, which is not linearly
separable is a logical connective "exclusive disjunction", which may be formally
specified as a negation of a connective of equivalence, () ()x y x y⊕ ⇔ ¬ ≡ , in
computer-science literature this connective is usually called the XOR Boolean
function, ()XOR x, y x yϕ = ⊕ , its functional values are specified in tab. 3.

Table 3. XOR Boolean function

x y ϕXOR (x,y)
1 0 0 0
2 0 1 1
3 1 0 1
4 1 1 0

If we introduce its functional values into a state space x - y we get a diagram
displayed in fig. 9, which is evidently linearly inseparable.

Figure 9. A diagrammatic outline of XOR Boolean function in a state space of its arguments,
where objects represented by open (filled) circles are evaluated by 0 (1) . We see from the figure
that there could not exist a straight-line (a hyperplane), which divides the whole plane into two
sub-planes such that each sub-plane contains two object of the same kind.

 11

Applying a technique from the first part of this chapter, we may construct a
neural network, which simulates this inseparable Boolean function. From its
functional values presented in tab. 3 we may directly construct its an equivalent
form composed of two clauses

() () ()1 2 1 2 1 2XOR x ,x x x x xϕ = ¬ ∧ ∨ ∧ ¬ (14)
Then this Boolean function is simulated by the following neural network
displayed in fig. 10.

1

A B

x1

y(01)

x2

1
x1

y(10)

x2

1

1

1

x1

x2

yXOR

C
Figure 10. Diagrams A and B simulate single conjunctive clauses from (14). Diagram C
represents 3-layer neural network, which hidden neurons are taken from diagrams A and B,
respectively. An output neuron corresponds to a disjunctive connective.

Example 1. Construct a neural network, which simulates an addition of two
binary numbers:

1

2

1 2

α
α

β β

Single output binary variables are specified by 2 1 2β = α ⊕ α and 1 1 2β = α ∧ α . If
we use (14), then the second output variable may be written in a form

() ()2 1 2 1 2β = ¬α ∧ α ∨ α ∧ ¬α , the corresponding network is displayed in fig.
11.

Figure 11. A neural network, which performs an addition of two one-bit variables.

 12

 In the previous part of this Chapter there was demonstrated that a single
logical neuron is capable to emulate only those Boolean functions that are
linearly separable. This severe restriction may be removed if we introduce the
higher-order logical neurons [7], which output activity is specified by a
generalization of (3) using terms of higher orders

()
1 1

n n

i i ij i j
i i , j

i j

y s w x w x x ...
= =

<

ξ

⎛ ⎞
⎜ ⎟
⎜ ⎟

= + + + ϑ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑
14444244443

 (15)

If an internal potential ξ is determined only as a linear combination of input
activities (i. e. only by the first summation term), then the logical neuron is a
standard one and it is called "the first order logical neuron". After Minsky and
Papert [7], this property of the higher-order neurons may be summarized as a
theorem.

Theorem 4. An arbitrary Boolean function f is simulated by a logical neuron of
properly high order.

This theorem claims that each Boolean function may be simulated by a
single logical neuron of sufficiently high order; there exist such weight
coefficients and a threshold that for each specification of input
variables 1 2 nx ,x ,...,x , the calculated output activity is equal to a required value.

Example 2. Let us study, as an illustrative example, the Boolean function XOR,
which is not linearly separable. Its functional values are presented in tab. 3. Let
activity of a logical neuron be determined by a quadratic potential (i. e. we
study a logical neuron of the second order)

1 1 2 2 12 1 2y s w x w x w x x
ξ

⎛ ⎞
⎜ ⎟= + + − ϑ
⎜ ⎟
⎝ ⎠
144424443

 (16)

For XOR we obtain from single rows in tab. 3 these inequalities

2

1

1 2 12

0
0
0
0

w
w
w w w

− ϑ <
− ϑ ≥
− ϑ ≥

+ + − ϑ <

 (17)

If we solve successive this system of inequalities, we arrive at a solution
1 2 121 1 2, w w , wϑ = = = = − (18)

 13

x1

y x x= 1 2⊕x2

x x1 2

1
2

x1

y x x= 1 2⊕x2

x x1 2
1

A B
Figure 12. (A) A diagrammatic outline of the second-order logical neuron, which simulates
Boolean function XOR, where excitation input variables are specified by variables x1 and x2, an
inhibition activity is assigned to a product x1x2. An output activity z is specified by a step
function ()1 2 1 22 1z s x x x x= + − − . By direct verification for different values of input activities
we will see that this single second-order logical neuron simulates the XOR function. A fork of
inhibitive input means that this input activity is taken into account twice. (B) A transformation
of logical neuron of the second order, which simulates the connective XOR (diagram A), onto
a neural network composed entirely of neurons of the first order. This transformation is based
on a construction of product x1x2 by making use of single logical neuron (simulating a
connection of conjunction), an output from this neuron is used as doubled inhibition input for
the output neuron. Thus derived architecture is probably the simplest possible which may be
constructed from simple (first order) logical neurons (cf. fig. 9).

 In the example 2 we have shown that linearly inseparable function XOR
may be implemented by making use of a logical neurons with three inputs x1,
x2, and x1x2. In this connection we have to solve an additional problem of
calculation of the product x1x2, which may be simply performed by a logical
connective of conjunction, 1 2 1 2x x x x= ∧ . If these operation will be performed
by a logical neuron of conjunction (see fig. 12, diagram B), then we may create
the simplest neural network, which is composed of two neurons, where there
are used only two input activities x1 and x2. It means that a logical neuron of the
second order is capable to simulate correctly Boolean function XOR, which is
linearly inseparable in 2-dimensional phase space x1-x2, but it is linearly
separable in 3-dimensional phase space x1-x2- x1x2 , see fig. 13.

A concept of linearly separable Boolean function can be easily
generalized to a quadratic (cubic) separability by making use a concept of
quadratic (cubic) hypersurface.

Definition 1. A Boolean function f is called quadratic separable if and only if
there exist such weight coefficients wi, wij, and threshold coefficient ϑ that for
each specification of variables 1 2 nx ,x ,...,x the following inequalities are
satisfied

 14

()
()

()
()

1 2
1 1

1 2
1 1

1

0

n n

req n i i ij i j
i i , j

i j

n n

req n i i ij i j
i i , j

i j

y x ,x ,...,x w x w x x

y x ,x ,...,x w x w x x

= =
<

= =
<

= ⇒ + ≥ ϑ

= ⇒ + < ϑ

∑ ∑

∑ ∑
 (19)

x1

x1

x x1 2

x2

x2

1

1

1

1

0
0

0

0

A B

x1 x1

x2 x2

1 1

1 1

0 0

0 0

C D
Figure 13. A diagrammatic representation of XOR Boolean function. (A) If XOR function is
represented in 2-dimensional state space x1-x2, then objects with unit classification are not
linearly separable from objects with zero classification. (B) If XOR Boolean function is
represented in 3-dimensional phase space x1-x2-x1x2 , then there exists a hyperplane, which
mutually separates objects with different classification. A projection of this hyperplane into a
plane x1-x2 gives a quadratic curve, which separates objects with different classification, see
diagram C and D.

The above outlined approach to a study of separability of Boolean
functions can be generalized in a form of a theorem.

Theorem 5. An arbitrary Boolean function f can be correctly simulated by a
higher-order logical neuron.

This theorem means that for each specification of variables 1 2 nx ,x ,...,x there
exist a higher-order logical neuron (i. e. its weight coefficients and threshold
factor), which correctly specifies the given Boolean function for all possible
values of its arguments.

 15

12

3 4

5

A
12

3 4

5

B
Figure 14. Oriented connected graphs that represent a topology of neural network. The vertex
indexed by 1 represents an input neuron, vertices indexed by 2, 3, 4 represent hidden neurons,
and finally, the vertex indexed by 5 represents an output neuron. Diagram A is an acyclic graph,
whereas diagram B is a cyclic graph (it was created from the l.h.s. graph by reversing
orientation of an edge 3-4) .

3 Formal specification of neural networks
From our previous discussion it follows that a concept of neural network
belongs to fundamental notions of general theory of neural networks (not only
those networks that are composed of logical neurons). Neural network is
defined as an ordered triple

()G, ,= wN ϑ (20)
where G is a connected oriented graph, w is a matrix of weight coefficients, and
ϑ is a vector of threshold coefficients.
 Up to now we did not use time information in an explicit form. We
postulate that time t is a discrete entity and is represented by natural integers.
Activities of neurons in time t are represented by a vector x(t) , in the time t = 0
a vector x(0) specifies initial activities of a given neural network. Relation (4)
for an activity of the ith neuron in time t is specified by

() ()1t t
i ij j i

j
x s w x −⎛ ⎞

= − ϑ⎜ ⎟
⎝ ⎠
∑ (21)

where summation runs over all neurons that are predecessors of the ith neuron,
activities of these neurons are taken in the time t-1. As an example, let us study
a neural network displayed in fig. 14, where the neural network is specified by
an acyclic graph, activities of single neurons are determined by (21) as follows:

 16

()

() ()()
() () ()() ()
() () ()()
() () () ()()

1

1
2 1

1 1
3 1 2

1 1
4 1 3

1 1 1
5 2 3 4

0

2 1 2

1

1

t

t t

t t t
max

t t t

t t t t

x external input

x s x

x s x x t , ,...,t

x s x x

x s x x x

−

− −

− −

− − −

=

= − −

= + − =

= − + −

= + + −

 (22)

As a side notice, in a consequence of the fact that the neural network is acyclic,
in the course of calculation of an activity ()t

ix we need to know activities of the
predecessor neurons in the previous time t-1. Neural network N may be

understood as a function, which maps an activity vector ()1t−x in the time t-1
onto an activity vector ()tx in the time t

() ()()1t tF ;−=x x N (23)

where the function F contains as a parameter the specification N of the given
network.
 According to a topology of graphs G from (20), neural networks are
divided into two big classes: if graph G is acyclic, then the neural network is
called feedforward, in the opposite case, if graph G is cyclic, then the network is
called recurrent (see fig. 15).

1

2 3 4

5

0

B

2 1

1

1

2 3 4

5

0

A

2 1

1

Figure 15. Neural networks that are both specified by oriented graphs outlined in fig. 14. (A)
Feedforward neural network specified by the acyclic graph G displayed in fig. 14, diagram A.
(B) Recurrent neural network specified by the cyclic graph G displayed in fig. 14, diagram B.

 17

 If initial values of activities of neurons indexed by 2-5 for t=1 are zero
and input activities are specified by a binary vector of length tmax=10 are
x1=(1101101010), then activities of hidden and output neurons from networks
specified in fig. 14, diagram A, are presented in the following table for times
1≤t≤10.

t x1 x2 x3 x4 x5
1 1 0 0 0 0
2 1 0 0 0 0
3 0 1 0 0 0
4 1 1 0 0 1
5 1 0 1 0 1
6 0 0 0 0 1
7 1 1 0 0 0
8 0 0 1 0 1
9 1 1 0 1 1
10 0 0 1 0 1

In general, we may say, that neural network forms a mapping (with parameters
specified by graph topology G, weight coefficients w, and threshold coefficients
ϑ) of a sequence of input activities onto a sequence of output activities

() ()0001110111 1101101010F , parameters of network= (24)
 Recurrent neural networks [3,12,13] are specified by a cyclic oriented
graph, see diagram B, fig. 14. In this case we may say that this type of recurrent
network has a memory. As a consequence of an existence of closed oriented
cycles in recurrent networks, a repeating character of dependency of some
activities from other neurons may appear. For instance, in the course of
calculation of the activity x2 in time t, as a consequence of oriented cycles we
have to know activities of neurons 1, 2, and 5 in time t-1. Moreover, if we
calculate an activity x5 in a time t-1, then we must know activities neurons
indexed by 2 and 4 in time t-2. From this simple discussion it follows that an
activity of neuron indexed by 5 in time t is determined by previous activities in
times t-1 and t-2. In forthcoming steps the “window to history” may be
extended, this fact specific for recurrent networks is called the „the memory of
recurrent networks “.
For a similar sequence of input activities as was used in the previous illustrative
example, x1=(1101101010) and for similar initial activities of other neurons for
t=1 (activities of neurons 2-5 in t=1 are zero), by using relations (21) we get

 18

activities of the neural network for different increasing time, which are outlined
in the following table.

t x1 x2 x3 x4 x5
1 1 0 0 0 0
2 1 0 0 0 0
3 0 0 0 0 0
4 1 1 0 0 0
5 1 0 1 0 1
6 0 0 1 0 0
7 1 1 0 1 0
8 0 0 1 0 1
9 1 1 0 1 0
10 0 0 1 0 1

Similarly as in previous example of feedforward neural network (see fig. 15,
diagram A and eq. (24)), also a recurrent neural network (see fig. 15, diagram B)
can be interpreted as a mapping of input sequence x1=(1101101010) onto an
output sequence x5=(0000100101).

4 Finite state machine (automaton) [3,7,9]
A finite state machine is schematically outlined in fig. 16, this machine works in
discrete time events 1, 2,..., t, t+1,... . It contains two tapes of input symbols and
output symbols, respectively, where output symbols are s determined by input
symbols and internal states s of the machine (see fig. 16)

()1t t tstate f state ,input symbol+ = (25a)

()1t t toutput symbol g state ,input symbol+ = (25b)

where functions f and g specify the given machine and are considered as its
basic specification:
(1) Transition function f determines the next state, this is fully specified by

an actual state and an input symbol,
(2) Output function g determines an output symbol, this is fully specified by

an actual state and an input symbol.

 19

101000 11 0 10100 011 0.....

s

input symbol output symbol

finite-state machine

machine state

Figure 16. A finite state machine works in discrete time steps 1, 2,...,t, t+1, ,... . It contains two
heads, one for reading of an input symbol and another one for printing of output symbol. In each
time step t the machine is in specific internal state s, in the forthcoming time step t+1 an internal
state s is determined by internal state for a time step t and an input symbol also in time step t
(see relations (26a-b)).

Definition 2. A finite state machine (with an output, called alternatively the
Mealy automaton) is defined by an ordered 6-tuple ()iniM S ,I ,O, f ,g ,s= ,

where { }1 mS s ,...,s= is a finite set of internal states, { }1 2 nI i ,i ,...,i= is a finite

state of input symbols, { }1 2 pO o ,o ,...,o= is a finite set of output symbols,
:f S I S× → is a transition function, :g S I O× → is an output function, and

inis S∈ is an initial state.

s1 s2start

0/b

0/a

1/a 1/a

Figure 17. An example of finite state machine, which is composed of two states, { }1 2S s ,s= ,

two input symbols, { }0 1I ,= , two output symbols, { }O a,b= , and an initial state s1. Transition
and output functions are specified by tab. 4.

 20

Table 4. Transition and output functions of
a finite state machine displayed in fig. 17.

 f g
transition
function

output
function

state

0 1 0 1
s1 s2 s1 b a
s2 s1 s2 a a

Transition and output functions may be used for a construction of a model of a
finite state machine, see fig. 17.

Sequences of internal states and output symbols for a finite state
machine displayed in fig. 16 are determined by tab. 5 for an input sequence of
symbols (100111010...). This device may be interpreted as a mapping of input
string of symbols onto output string of symbols

100111010
input string x output string y

G ...; f ,g abaaaabaa...
⎛ ⎞

=⎜ ⎟⎜ ⎟
⎝ ⎠
1442443 1442443

where a symbol in an output string means an “empty token”, symbols of
output string are shifted by one time step with respect to the input string. A
mapping G is composed of functions f and g, which specify a „topology“ of the
finite state machine. For a construction of relationship between neural network
and finite state machine we specify this approach as follows: Let

() () () ()1 2 3 ti i i ...i ...=i , () () () ()2 3 4 1to o o ...o ...+=o , and () () () ()1 2 3 ts s s ...s ...=s be strings of
input symbols, output symbols, and internal states, respectively (see tab. 5).
Single symbols from these strings are in two mutual relationships (see fig. 18)

() () ()()1t t ts f s ,i+ = (26a)
() () ()()1t t to g s ,i+ = (26b)

f

g

it
ot+1

st+1

st

it

st

Figure 18. A diagrammatic outline of finite state machine represented by transition and output
functions f and g, respectively (see eq. (26a-b)).

 21

The first equation (26a) specifies the next internal state s(t+1) by a transition
function f, input symbol i(t) , and internal state s(t). In a similar way, the second
equation (26b) specifies the new output symbol o(t+1) by an output function g, a
previous internal state s(t), and an output symbol i(t). We say that a neural
network is equivalent to a finite state machine if and only if responses of both
devices are identical for the same input. For this equivalence it is not important
a way of mapping of input symbols onto output symbols, i. e. a type of
calculation accompanying this transformation, a substantial feature here is an
equality of output strings for the same input strings for both devices (neural
network and finite state machine).

Table 5. Sequences of input symbols, internal states, and output
symbols for a finite state machine displayed in fig. 15.

input symbol 1 0 0 1 1 1 0 1 0 ..
internal state s1 s1 s2 s1 s1 s1 s1 s2 s2 ..
output symbol a b a a a a b a a

Proof of this theorem is simple and constructive, we show how we can construct
for a given neural network single elements from the definition 2,

()iniM S ,I ,O, f ,g ,s= . First of all we divide a binary vector of neural-network
activities x onto a direct sum I H O= ⊕ ⊕x x x x , where its components are
binary vector of input activities Ix , hidden activities Hx , and output activities

Ox , respectively.
(1) The internal-state set S is composed of all possible binary vectors Hx ,

{ }HS = x . Let the neural network be composed of nH hidden neurons,

then a cardinality of S is 2 Hn .
(2) The set of output symbols is composed of all possible binary vectors xI ,

{ }II = x , a cardinality of this set is 2 In , where nI is number of input
neurons.

(3) The set of output symbols is composed of all possible binary vectors
xO , { }OO = x , a cardinality of this set is 2 On , where nO is number of
output neurons.

Theorem 5 [xx]. Each neural network can be represented by an equivalent finite
state machine with output.

 22

(4) A function :f S I S× → assigns to each couple of internal state and
input symbol a new internal state. This function is specified by a
mapping (23) produced by the given neural network

() () ()()1 ;t t t
H I HF+ = ⊕x x x N (27)

This mapping assigns a new internal state in a time t to a couple
composed of internal state and input symbol in time t-1.

(5) Function :g S I O× → assigns a new output symbol to each couple of
internal state and input symbol. This function is specified by a mapping

() () ()()1 ;t t t
O I HF+ = ⊕x x x% N (28)

(6) An initial internal state sini is usually selected such that all activities of
hidden neurons are vanishing (zero).

Summarizing, for a given neural network we unambiguously specify a

finite state machine, which is equivalent to the given neural network. This
means that any neural network may be represented by an equivalent finite state
machine, Q.E.D.

A proof of inverse theorem with respect to theorem 5 (i. e. each finite
state machine may be represented by an equivalent neural network) is not a
trivial one, the first who proved this inverse form was Minsky in 1967 in his
famous book "Computation: Finite and Infinite Machines" [7] by making use
of very sophisticated constructive approach. Our goal is to construct for a
given finite state machine an equivalent neural network.

Theorem 6 [xx]. Each finite state machine with output (i. e. the Mealy
automaton) can be represented by an equivalent recurrent neural network.

Example 2. In this example we present a simple illustrative proof of the above
theorem 6. The constructed neural network will correspond to an example of
finite state machine with state diagram displayed in fig. 17. This machine is
determined for transition and output functions (see tab. 4), which may be
expressed as two Boolean function:
(1) Transition function ()1t t tstate f state ,input symbol+ = :

state,input symbol transition function f
(s1,0) → (0,0) (b) → (1)
(s1,1) → (0,1) (a) → (0)
(s2,0) → (1,0) (a) → (0)
(s2,1) → (1,1) (a) → (0)

 23

(2) Output function ()1t t toutput symbol g state ,output symbol+ = :
state, output symbol output function g

(s1,0) → (0,0) (s2) → (1)
(s1,1) → (0,1) (s1) → (0)
(s2,0) → (1,0) (s1) → (0)
(s2,1) → (1,1) (s2) → (1)

This means that both functions f and g are specified as Boolean functions
()1 2 1 2f x ,x x x= ¬ ∧ ¬

() () ()1 2 1 2 1 2g x ,x x x x x= ¬ ∧ ¬ ∨ ∧
A representation of both these functions in a form of neural network composed
of logical neurons is displayed in fig. 19.

x1 0
x2

f x x(,)1 2

x1

0

x2

2

1 g x x(,)1 2

A B

Figure 19. Boolean functions f and g from example 2.

i

0

0

2

1

s

o

Figure 20. A recurrent neural network, which represents a finite state machine displayed in
fig. 17. This network was created by a substitution of Boolean functions f and g from fig. 19 to
diagram displayed in fig. 18.

Let us note that this simple example may serve as a sufficient
illustrative specification of a way how to produce a constructive proof of

 24

theorem 6, i. e. for any finite state machine (specified by functions f and g) we
know a way of construction of an equivalent recurrent neural network. In the
first step we construct a neural representation of functions f and g by making
use the method outlined in section 2 for construction of Boolean function. In
the second step the functions f and g are substituted by their neural
representations in general diagram displayed in fig. 18, which specifies finite
state machine. This second step may be understood as a finalization of proof of
theorem 6, we have demonstrated a constructive method for a construction of
neural network equivalent to the given finite state machine.

To summarize our results, we have demonstrated that neural networks
composed of logical neurons are powerful calculation device: (1) feedforward
neural networks represented by acyclic graph are a universal approximator of
Boolean functions and (2) between finite state machine and neural network
there exists a property of mutual equivalency. An arbitrary finite state machine
may be simulated by a recurrent neural network, and conversely, an arbitrary
neural network (feedforward of recurrent) may be simulated by a finite state
machine. Both these properties have been proved in constructive way, i. e. we
have an algorithm how to construct another device if we know its counterpart.
There exists a substantial limitation based on the fact that connection between
neurons and their specification as excitatory or inhibitory and also values of
threshold coefficients are specified by an architecture of network. In other
words, neural networks composed of logical neurons are incapable of learning;
a Boolean function (or Boolean functions, if neural network has more than one
output neuron) is fully fixed in the course of its counterpart finding process.

y

A

x

s

hidden onsneur output
neurons

input
neurons

xa

x y
x1

yb

s3

x2

s1 s2

s4

y1

y2

B

Figure 21. (A) A cybernetic interpretation of brain as a device, which transforms input x onto
output y, where this transformation is affected by internal state s . It means that we may get two
different responses y1 and y2 on the same input x. (B) Connectionist (neural) model of the
brain implemented by a neural network, which is composed of (1) input neurons (e. g.
perception neurons of eye retina), (2) hidden neurons, which are performing a transformation
process of input onto output, and (3) output neurons (e. g. neurons controlling motor activities).
Activities of hidden neurons form internal states of neural network, different initial values of
their activities cause different responses to the same input activity x.

 25

5 A view of artificial intelligence and cognitive science on the
problem of relationship between mind and brain
In the first part of this section we give a general view of artificial intelligence
and cognitive science on the complex mind – brain as a device, which
transforms input data x (produced by sight, hearing, smell and so on) onto
motor impulses y (whereas this transformation is depending on an internal state
s (see fig. 21, diagram A)). The brain may be considered as a huge parallel
computer realized by a neural network, which transforms input information x
onto output information y, where this transformation is affected by internal state
(see fig. 21, diagram B). This “neuroscience interpretation” of brain on a
microscopic (neural) level does not allow a direct study of higher cognitive
activities (solution of problems, understanding of human speech, etc.). We
don’t say that it is fundamentally impossible, but it is very clumsy and
complicated. For instance, a complexity of this problem is similar to a study of
macroscopic problem “surface tension” of water by applying methods of
quantum mechanics. Of course, in principle this way of study is possible, but it
is very numerically as well as theoretically demanding problem. If we apply
here a “phenomenological” approach based on macroscopic thermodynamics,
then it is substantially simpler than a pure microscopic approach based on
quantum mechanic. In the macroscopic approach we may formulate the
problem of “surface tension” very quickly in terms of experimentally measured
entities; we get a formula, which is immediately experimentally verified. There
exists analogical situation for a study of mind – brain relationship. Neural
(connectionist) view is effective only for studies of elementary cognitive
activities (e. g. initial transformation of visual information from eye retina).
Higher cognitive activities are studied entirely by symbolic or cognitivistic
approaches based on an idea that human brain is a computer, which activities
are based on the following principles. These principles form a basis of the so-
called symbolic paradigm:

(1) It transforms symbols by simple syntactic rules onto other
symbols, whereas

(2) sought are symbolic representations implemented by applying
a language of thinking, and

(3) mental processes are causal sequences of symbols generated
by syntactic rules.

An application of term „computer“ usually evokes an idea of sequential
computer with von-Neumann architecture (e. g. personal computers are
endowed by this architecture), where a strict demarcation line between

 26

hardware and software is possible; on the same computer may be performed
huge number different programs – software. For these computers, a strict
dichotomy exists between hardware and software. Unfortunately, a paradigm of
a mind as a computer evokes for many people an idea that there is possible to
separate brain from the mind, as two “independent” phenomena, where a brain
plays a role of a hardware and the mind a role of software (performed on the
hardware - brain).

Let us turn our attention to a modern “neuroscience” approach for an
understanding of a relationship between brain and mind [1,10], which is based
on the connectionist conception of brain and mind. A basal model of brain
(based on experimental neuroscience knowledge) consists in facts that it is
formed of neurons that are mutually interconnected by directed (one way)
synaptic connections (see fig. 21, diagram B). Thereafter we say that a
capability of brain performing not only cognitive activities but also being a
memory should be coded in its architecture. It means that a computational
paradigm of human brain must be formulated in such a way that the brain is a
parallel and distributed computer composed of a few milliards (GB) neurons,
which are mutually interconnected by one-way connections into extremely
complex network. A program in this parallel computer is a built-in function of
its architecture, i. e. human brain is a single-purpose parallel computer
represented by its neural network, which could not be reprogrammed without
changes of its architecture. This “neuroscience” contemplations may be
summarized in a general conclusion that the brain and mind form one integral
unit, where the mind should be understood as a “program” performed by the
brain. The brain and mind are nothing but two different views on the same
object brain-mind:

(1) If we speak about a brain, we thought its “hardware”
structure biologically realized by neurons and their synaptic
connections (formally represented by a neural network), and
conversely,

(2) If we speak about a mind, we thought its cognitive and
other activities performed by a neural network (which
formally represents the brain).

We say a few remarks on relationship between a distributed representation
(called the connectionism or subsymbolism) and a localistic representation
(called the symbolism or between cognitivism) in theory of mind. Recently,
there is used a compromise solution that higher level activities are considered
on symbolic level (though there exist good connectionist models), whereas low
level cognitive activities are considered on connectionist level. For

 27

completeness, we mention that D. Gabbay has published a seminal book [xx] in
which he and his coworkers demonstrated connectionist approaches based on
neural networks for a study of logical reasoning.

 A realistic interpretation of both these approaches is that they offers
different views at the same problem. While the symbolism is appropriate for
interpretations of higher-order cognitive activities of human brain, its
counterpart is appropriate for low-level cognitive activities (e. g. perception).
An alternative interpretation of this view is that symbolism could be understood
as an approach bottom-up, which interprets higher cognitive activities by
making use of different approaches that are known from artificial intelligence.
We have to remember that a suggested model must have connectionistic
plausibility; i. e. a substrate of human thinking is brain with entirely
connectionist architecture. On the other hand, connectionist approaches to a
study and interpretation of cognitive activities of the human brain, are fully
based on neural networks and represent up-bottom approach. In the course of
application of connectionist methods there is necessary to introduce
hypothetical blocks (modules) that perform special activities, which are closely
related with block structure of symbolic approaches. In an ideal case, we shall
expect that both these approaches are met at halfway denoted by dashed line in
fig. 22. For instance, connectionist approaches offer an interpretation of
modules used in symbolic approaches. In other words, the connectionism offers
for symbolic approaches a "microscopic theory" for its phenomenological
notions, which is in accordance with recent concepts of a structure and
physiology of human brain.

6 Discussion and final notes
McCulloch and Pitts’s paper is very ostensibly ‘‘neural’’ in the sense that he
used an approach for specification of neuron activities based on simple rule all-
or-none. However, McCulloch–Pitts neural networks are heavily simplified and
idealized when compared to the then known properties of neurons and neural
networks. The theory did not offer testable predictions or explanations for
observable neural phenomena. It was quite removed from what
neurophysiologists could do in their labs. This may be why neuroscientists
largely ignored McCulloch and Pitts’s theory. For this scientific community, its
main power is not consisting in a capability to produce verifiable hypothesis,
but it consists in a fact that such extremely simple neural theory offers
arguments of basal character for a discussion of “philosophical” problems about
a brain and mind relationship. There can not be expected that a further
“sophistication” of this theory (e. g. the rule “all-or-none” is substituted by

 28

another more realistic rule or “spiking” neurons are used, etc.) will negatively
influence general results deduced from the model.

The 1943 paper by McCulloch and Pitts was influential in a large
number of domains, some of them unexpected. In the realm of mathematics
itself this paper is often given credit for founding of the important field known
as finite state automata theory. However, its influence went even further. The
paper was published at the height of the Second World War. At that time there
were a number of projects in progress to build practical computing machines for
various military purposes. The teams involved became aware of the
McCulloch–Pitts paper very early on.

One of those influenced was John von Neumann [xx], who is known as
a creator of the so-called „von Neumann computer architecture“, which was
outlined in his famous 1945 technical report. He mentioned that in existing
digital computing devices, various mechanical or electrical devices have been
used as elements. It is worth mentioning that the neurons are definitely
elements in the above sense. It is easily seen that these simplified neuron
functions can be imitated by telegraph relays or by vacuum tubes. The proposed
similarity between the computer and the architecture of the brain was taken
very seriously by computer scientists at the time. When early computer
scientists referred to computers as ‘giant brains’, they were not just using a
metaphor, but were referring to what they thought were two computing systems
based on the same principles but using different hardware. From the early
1940s the McCulloch–Pitts neuron was considered by many non-neuroscientists
to be the most appropriate way to approach neural computation, largely because
the work of McCulloch and Pitts was so well known.

Finally, M. Minsky in the early 1970s commented [8] the paper of
McCulloch and Pitts as follows: The McCulloch and Pitts paper is not a correct
for many biological neuroscientists in its initial domain of application – in this
case brain theory, since the used rule “all-or-none” is very rough and
simplifying from the standpoint of modern neurophysiology. But it is immensely
valuable in many other places and at many different levels, and secondly, that a
tight coupling between brain science and computer science has existed from the
earliest beginnings of both fields, and has enriched both.

Acknowledgment. The authors acknowledge financial support from Slovak
grant agency, grant VEGA 1/0553/12.

References
[1] Anderson, J. A., Rosenfeld, E.: Talking Nets: An Oral History of Neural

Networks. MIT Press, Cambridge, MA, 1998.

 29

[2] D´Avila Garcez, A. S., Lamb, L. C., Gabbay, D. M.: Neural-Symbolic
Cognitive Reasoning. Springer, Berlin, 2009.

[3] Kleene, S. C.: Representation of events in nerve nets and finite
automata. In Shannon, C. E., McCarthy, J. (eds.): Automata Studies.
Annals of Mathematics Studies, Vol 34. Princeton University Press,
Princeton, 1956, pp. 3-41.

[4] Kvasnička, V., Beňušková, Ľ., Pospíchal, J., Farkaš, I., Tiňo, P., Kráľ,
A.: An Introduction of Theory of Neural Networks, IRIS, Bratislava,
1997 (in Slovak).

[5] Kvasnička, V., Pospíchal, J.: Mathematical Logic, STU Press,
Bratislava, 2006 (in Slovak).

[6] McCulloch, W. S., Pitts, W. H.: A Logical Calculus of the Ideas
Immanent in nervous Activity. Bulletin of Mathematical Biophysics
5(1943), 115 – 133.

[7] Minsky, M. and Papert, S.: Perceptrons. An Introduction to
Computational Geometry. MIT Press, Cambridge, MA, 1969.

[8] Minsky, M. L.: Computation. Finite and Infinite Machines. Prentice-
Hall, Englewood Cliffs, NJ, 1967.

[9] Molnár Ľ., Češka, M., Melichar, B.: Grammars and Languages:
Publishing House ALFA, Bratislava, 1987 (in Slovak).

[10] Piccinini, G,: The First Computational Theory of Mind and Brain . A
Close Look at McCulloch and Pitt’s ‘‘Logical Calculus of Ideas
Immanent in Nervous Aactivity’’. Synthese, Vol. 141(2004), 175–215.

[11] Randell, B. (ed.): The Origins of Digital Computers. Springer, Berlin,
1973.

[12] Rojas, R.: Neural Networks. A Systematic Introduction. Springer, Berlin,
1996.

[13] Šíma, J., Neruda, R.: Theoretical Questions of Neural Networks.
Matfyzpress, Praha, 1999 (in Czech).

[14] von Neumann, John: First Draft of a Report on the EDVAC, 1945.
Retrieved October 1, 2012 from http://qss.stanford.edu/~godfrey/
vonNeumann/vnedvac.pdf,

