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Basic concepts of strings 
 
A vocabulary of symbols-tokens 

{ },...c,b,aA =  
A set composed of all possible strings that can be constructed from this vocabulary is 
denoted by 

{ } { },...aab,aaa,...ab,aa,...,c,b,a,,...c,b,aA ε== ∗∗  
where ε is the so-called empty string (or empty token). A length (number of 
nonempty tokens) of the string ∗∈α A  is denoted by α , then 0=ε . 
 

Example 
 
{ }b,aA =  

{ } { },...aab,aaa,...bb,ba,ab,aa,b,a,b,aA ε== ∗∗  
( ) 6=α⇒∈=α ∗Aaabbaa  

( ) 4=β⇒∈=β ∗Ababa  
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A binary-tree representation of strings 
 
Let us consider a string 

( ) ∗∈=α Aa...aa n21  
its length is n=α . This string may be represented as a binary tree as follows 
 

ε a1

a1

a1

a1

α=a1

a2

a2

a2...
a2...

an-1

an-1

an

an

 
 
Its leafs are assigned to single tokens of the string. 
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How to code strings? 
Symbols from a vocabulary A={a,b,c,...} are coded by q-dimensional binary vectors, 
e.g. 

( ) { }
( )
( )

1,0,0,... 0,1
0,1,0,...
0,0,1,...

..................

qa
b
c

= ∈
=
=

 

A string from {a,b,c,...}* is then considered as a sequence of binary vectors 
abca → 100 010 001 100... , ... , ... , ...a f a f a f a fb g 

In general 
α α α1 2 ... , , ,...n a b ca f k p∈ ∗ 

↓ 

( ) { }( )1 2... 0,1
nq

nx x x= ∈x  

Note: There exists many other ways how to code tokens from the vocabulary A by 
binary vectors of the fixed width. 



Priesvitka 5 

A parametric mapping transforms strings of  variable lengths onto real 
vectors of the fixed dimension and vice versa 

 
Direct mapping 

 
  

G w A a b c pa f k p a f: ∗ ∗= →, , ,... ,0 1  

 

Inverse mapping 

parametric
mapping G w( )

aabbca...ab y= y ,y ,...,y( )1 2 n

 
 

, , , ,...G w A a b cpa f a f k p: 0 1 → =∗ ∗
 

 

Note: Both these mappings 
depends on the parameter w,  a 
change of this parameter 
causes a change of mappings. 
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A way of realization of the direct mapping  
(strings onto real vectors of fixed width) 

 
Let us postulate of ring tokens are numerically coded by k-dimensional binary 
vectors. The parametric mapping G(w) is specified by the 3-layer feed-forward neural 
network 

 
 

( )w;,G RL xxy =
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A string ( )1 2 n... A∗= α α α ∈α  is recurrently coded as follows 
 

ε α1

y1 α2

y2
αn-1

yn-1

yn

αn

 

 
 

( )1 1G , ;w= αy ε  
 

( )2 1 2G , ;w= αy y  
  ………………... 

( )1n n nG , ;w−= αy y  

A final vector yn represents a mapping of the string ( )1 2 n... A∗= α α α ∈α  by a 
p-dimensional real vector ( ) ( ) p

p ,y,...,y,y 1021 ∈=y  
 
Empty token ε is coded by p-dimensional vector composed entirely of 0.5-entries 

( ) ( )0 5 0 5 0 5 0 1 p. , . ,..., . ,ε = ∈y  
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A way of realization of the inverse mapping  
(real vectors of fixed width onto string) 

 
The inverse parametric mapping ( )ŵĜ  is specified as follows 

 
 

( ) ( )ŵ;Ĝ, RL yxx =  
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A code y=yn is recurrently decoded as follows 
 

 
 
 

εα1

yn

yn-1

α2

y2

y1

αn-1

αn

 

 
( ) ( )1n n n

ˆ ˆ, G ;w− α =y y  

( ) ( )2 1 1n n n
ˆ ˆ, G ;w− − −α =y y  

…………………… 

( ) ( )1 2 2
ˆ ˆ, G ;wα =y y

( ) ( )1 1
ˆ ˆ, G ;wε α = y    

 
Note: Applying this recurrent calculation we obtain from the vector y by making use 
the inverse mapping ( )ŵĜ  a token sequence an, an-1, …, a2, a1, which constitutes the 
string α. 

Both mappings G(w) and ( )ŵĜ  are unified to auto-associative 
mapping transforming strings onto strings 
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G w( )

... ...
x´L

y

x´R

G w( )

... ...

...

xL xR  
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( )w;,G RL xxy =

( ) ( )ŵ;Ĝ, RL yxx =  

↓ 

( ) ( )( )ŵ;w;,GĜ, RLRL xxxx =′′  
 

Composite mapping is auto-associative

↓ 
( ) ( )( )ŵ;w;,GĜ, RLRL xxxx =  
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A fulfillment of this condition depends on the parameters of both mappings G and Ĝ . 
Let us define an objective function 

( ) ( )( )(
( )( ) )2

2

2
1

RR

LL

ŵ,w

ŵ,wŵ,wE

xx

xx

−′

+−′=
 

If composite mapping GĜ  is auto-associative, then this objective function should 
be vanishing 
 
 
 

 
 

 
 
 
 

Conclusion: A condition that a composite mapping GĜ  
is auto-associative can be achieved by minimizing the 
objective function E with respect to its parameters.  
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This minimization problem is realized by the steepest-descent method (the simplest 
gradient method) 

( ) ( )
( )t

tt

w
Eww ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

λ−=+1  

( ) ( )
( )t

tt

ŵ
Eŵŵ ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

λ−=+1  

where λ is a small positive coefficient called the learning rate.  
 
 
 

How to learn the auto-associative composite mapping  GĜ  ? 
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Let us introduce the notation 
( ) ( )( )

( )ŵ,w;,G
ŵ;w;,GĜ,

RLtot

RLRL

xx
xxxx

=
=

 

A string ( ) ∗∈=α Aa...aa n21  is used as a training object of the composite mapping 
GĜ   

 
An outline of adaptation process 
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Gtot

xL xR input activities

calculated output activities

required output activities

xL

xL

xR

xR

=

Δw training object

 
 

A string ( ) ∗∈=α Aa...aa n21  from the training set corresponds to n learning tasks 
(that are often characterized as a “moving target” problems) 
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The last vector yn is as a final output from the RAAM mapping Gtot. If this mapping 
is auto-associative (i.e. input and output are equal), then yn is a vector code of the 
string α. Formally  

( )ŵ,w;Gtotn α== yy  

( ) ( ) p
tot ,Aŵ,wG 10: →∗  
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G

e

y1

α1

G
y2

yn-3 αn-2

G
yn-1

yn-2 αn-1

G
yn

yn-1 αn

Step 1 Step 2 Step n

.........

G

e

y1

G

y2

G

y3

G

yn

Step 1 Step 2 Step 3 Step n

.........

α1 y1 α2
y2 α3

yn-1 αn

Step 3

Coding  of a string into
a vector  

=( , ,..., )  α α α α ∈1 2 n A*
y=( , ,..., )y y y1 2 p ∈(0,1)p

Decoding  of 
into a  string

a  
 =( , ,..., )  α α α α ∈1 2 n A*

vector y=( , ,..., )y y y1 2 p ∈(0,1)p
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         Recurrent construction of numerical code represented by an 
n-dimensional real vector y∈(0,1)p 

         

                

The resulting code is assigned to a 
string α=(a1a2…an). This construction 
is composed of n successive steps, 
where the weight and threshold 
coefficients are updated when input 
activities (y(i-1),code(ai)) are different 
from output activities ( ) ( )( )i i

L R,′ ′x x . 
Waved vertical lines mean that 
activities of top vertices are set equal 
to activities of bottom vertices.  The 
numerical code y assigned to the 
string α is determined by the resulting 
n-th vector of hidden activities, 
code(α)= y(n). 
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How to calculate gradient of the objective function ? 

 

 

 
 
 

( ) ( )( )(
( )( ) )2

2

2
1

RR

LL

ŵ,w

ŵ,wˆ,ŵ;,wE

xx

xx

−′

+−′=ϑϑ
 

 
 

 
 
 



Priesvitka 20 

Partial derivatives of E with respect to the parameters w and ∂ŵ are determined as 
follows 

( ) ( )
w
xxx

w
xxx

w
E R

RR
L

LL ∂
′∂

−′+
∂

′∂
−′=

∂
∂  

( ) ( )

( ) ( )
ŵ
yxx

ŵ
yxx

ŵ
y

y
xxx

ŵ
y

y
xxx

ŵ
E

RRRLLL

R
RR

L
LL

∂
∂

δ−′+
∂
∂

δ−′=

∂
∂

∂
′∂

−′+
∂
∂

∂
′∂

−′=
∂
∂

 

 

♦ Partial derivatives Lx w′∂ ∂ , Rx w′∂ ∂ , and ˆy w∂ ∂  can be calculated if we know functional forms of 
dependencies of variables on parameters w and ŵ . 

♦ The term δ corresponds to an error injection to the bottom mapping block G(w) from the top mapping 
block ( )ˆ ˆG w  

♦ Partial derivatives are calculated in such a way that in the first stage are calculated those ones that 
correspond to the top mapping block and then in the second state those ones that correspond to the 
bottom mapping block – an analogue of the so-called back propagation method.  



Priesvitka 21 

An actual realization of mappings G(w) and ( )ŵĜ  by feed-forward 
neural networks composed of two layers  

 
 
 
 
 

G(w) :

 
( ) ( ) ( ) ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ϑ= ∑∑

==

q

j

R
j

R
ij

p

j

L
j

L
ijii xwxwty

11
, where ( ) 1

1 xt x
e−=

+
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( )ŵĜ :

 
( ) ( ) ( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ϑ= ∑

=

p

j
j

L
ij

L
i

L
i yŵtx

1
 

( ) ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ϑ= ∑

=

p

j
j

R
ij

R
i

R
i yŵtx

1
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( ) ( ) ( )

1

p
L L L

i i ij j
j

ˆx t w y
=

⎛ ⎞
′ = ϑ +⎜ ⎟

⎝ ⎠
∑  

( ) ( ) ( )

1

p
R R R

i i ij j
j

ˆx t w y
=

⎛ ⎞
′ = ϑ +⎜ ⎟

⎝ ⎠
∑

( ) ( ) ( ) ( )

1 1

p q
L L R R

i i ij j ij j
j j

y t w x w x
= =

⎛ ⎞
= ϑ + +⎜ ⎟

⎝ ⎠
∑ ∑

 

 
Unified network corresponding to composed mappings GĜ  is 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

( ) :ŵ,wGtot
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A back-propagation approach  

for construction of partial derivatives of the objective function 
 
 
(1) Output neurons 
 

( )
( ) ( )( ) ( ) ( )( )L

i
L

i
L

i
L

iL
i

xxxxE ′−′⋅−′=
ϑ∂
∂ 1  

 ( )
( ) ( )( ) ( ) ( )( )R

i
R

i
R

i
R

iR
i

xxxxE ′−′⋅−′=
ϑ∂
∂ 1  

( ) ( ) jL
i

L
ij

yE
ŵ
E

ϑ∂
∂

=
∂
∂  , ( ) ( ) jR

i
R

ij

yE
ŵ

E
ϑ∂
∂

=
∂

∂  

 



Priesvitka 25 

 
 

(2) Hidden neurons 
 

( ) ( )
( )

( )
( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ϑ∂
∂

+
ϑ∂
∂

−=
ϑ∂

∂
∑∑
==

R
ji

q

j
R
j

L
ji

p

j
L
j

ii
i

ŵEŵEyyE
11

1  

( )
( )L
j

i
L

ij

xE
w
E

ϑ∂
∂

=
∂
∂  , ( )

( )R
j

i
R

ij

xE
w

E
ϑ∂

∂
=

∂
∂  
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How to update 

the neural-network coefficients ?  
 

We use standard gradient steepest-descent optimization technique accelerated by the 
so-called momentum method 
 

( )( ) ( )( )
( )

( )
( )( )tL
i

t

L
i

tL
i

tL
i

E
ϑΔμ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

ϑ∂
∂

λ−ϑ=ϑ +1  

where ( )( ) ( )( ) ( )( )1−ϑ−ϑ=ϑΔ tL
i

tL
i

tL
i  is a difference of ( )L

iϑ  from the last two iterations.  
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Other network coefficients are updated by the similar way 

( )( ) ( )( )
( )

( )
( )( )tR
i

t

R
i

tR
i

tR
i

E
ϑΔμ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ϑ∂
∂

λ−ϑ=ϑ +1  

( )( ) ( )( )
( )

( )
( )( )tL
ij

t

L
ij

tL
ij

tL
ij ŵ

ŵ
Eŵŵ Δμ+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

λ−=+1  

( )( ) ( )( )
( )

( )
( )( )tR
ij

t

R
ij

tR
ij

tR
ij ŵ

ŵ
Eŵŵ Δμ+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

λ−=+1  
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Similarly, network parameters for hidden neurons are updated by 
 

( ) ( )
( )

( )t
i

t

i

t
i

t
i

E
ϑΔμ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ϑ∂

∂
λ−ϑ=ϑ +1  

( )( ) ( )( )
( )

( )
( )( )tL
ij

t

L
ij

tL
ij

tL
ij w

w
Eww Δμ+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

λ−=+1  

( )( ) ( )( )
( )

( )
( )( )tR
ij

t

R
ij

tR
ij

tR
ij w

w
Eww Δμ+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

λ−=+1  

Note: The momentum term in above update formulae helps to overcome local minima in the initial stage 
of optimization, in general, it integrates the effects of previous update steps. The momentum term μ is 
usually taken from 

0 3 1 0. .≤ μ <  

The optimization process is started by randomly generated network coefficients from the interval [-1,1]. 
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RAAM networks applied to coding of linear token strings may be 

interpreted as a special type of recurrent neural networks. 
 

 
 
RAAM network treated as a recurrent neural network. A loop between left input 
neurons and hidden neurons is created. The waved  line means that activities of left 
input neurons are set equal to activities of hidden neurons. 
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Activities of single neurons are formally determined by 
( )L LO′ =x y , ( )R RO′ =x y  
( )L RH ,=y x x , L =x y  

Activities y of hidden neurons are determined by a nonlinear relation 
( )RH ,=y y x  

If is is solved iteratively, stating from solution y(0) we get the following recurrent 
scheme 

( ) ( )( )t t
L LO′ =x y , ( ) ( )( )t t

R RO′ =x y  
( ) ( ) ( )( )1t t t

RH ,−=y y x , 
for t=1,2,… . If this recurrent is diagrammatically visualized, then we immediatelyget 
a scheme already presented in transparency 18 
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Unfolded RAAM neural network 
 

y
xL xR

xRxL

code( )α1

code( )α2

code( )αn

y(1)

y(2)

y(n)

=y( -1)n

y(0)

xL

xL

xR

xR

(2)

(2)

(2)

(2)

xL

xL

(1)

(1)

xL

xL

(n)

( )n

xR

xR

(1)

(1)

xR

xR

(n)

( )n

.. .
...

.. .
..

step 1

step 2

step n
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The End


