
Priesvitka 1

Generalized Theory
of Recurrent Auto-Associative Memory (RAAM) for Linear Strings

of Symbols

Vladimír Kvasnička
Institute of Applied Informatics

Faculty if Informatics and Information Technologies STU
Bratislava

email: kvasnicka@fiit.stuba.sk

November 2007

Priesvitka 2

Basic concepts of strings

A vocabulary of symbols-tokens

{ },...c,b,aA =
A set composed of all possible strings that can be constructed from this vocabulary is
denoted by

{ } { },...aab,aaa,...ab,aa,...,c,b,a,,...c,b,aA ε== ∗∗
where ε is the so-called empty string (or empty token). A length (number of
nonempty tokens) of the string ∗∈α A is denoted by α , then 0=ε .

Example

{ }b,aA =

{ } { },...aab,aaa,...bb,ba,ab,aa,b,a,b,aA ε== ∗∗
() 6=α⇒∈=α ∗Aaabbaa

() 4=β⇒∈=β ∗Ababa

Priesvitka 3

A binary-tree representation of strings

Let us consider a string

() ∗∈=α Aa...aa n21
its length is n=α . This string may be represented as a binary tree as follows

ε a1

a1

a1

a1

α=a1

a2

a2

a2...
a2...

an-1

an-1

an

an

Its leafs are assigned to single tokens of the string.

Priesvitka 4

How to code strings?
Symbols from a vocabulary A={a,b,c,...} are coded by q-dimensional binary vectors,
e.g.

() { }
()
()

1,0,0,... 0,1
0,1,0,...
0,0,1,...

..................

qa
b
c

= ∈
=
=

A string from {a,b,c,...}* is then considered as a sequence of binary vectors
abca → 100 010 001 100... , ... , ... , ...a f a f a f a fb g

In general
α α α1 2 ... , , ,...n a b ca f k p∈ ∗

↓

() { }()1 2... 0,1
nq

nx x x= ∈x

Note: There exists many other ways how to code tokens from the vocabulary A by
binary vectors of the fixed width.

Priesvitka 5

A parametric mapping transforms strings of variable lengths onto real
vectors of the fixed dimension and vice versa

Direct mapping

G w A a b c pa f k p a f: ∗ ∗= →, , ,... ,0 1

Inverse mapping

parametric
mapping G w()

aabbca...ab y= y ,y ,...,y()1 2 n

, , , ,...G w A a b cpa f a f k p: 0 1 → =∗ ∗

Note: Both these mappings
depends on the parameter w, a
change of this parameter
causes a change of mappings.

Priesvitka 6

A way of realization of the direct mapping
(strings onto real vectors of fixed width)

Let us postulate of ring tokens are numerically coded by k-dimensional binary
vectors. The parametric mapping G(w) is specified by the 3-layer feed-forward neural
network

()w;,G RL xxy =

Priesvitka 7

A string ()1 2 n... A∗= α α α ∈α is recurrently coded as follows

ε α1

y1 α2

y2
αn-1

yn-1

yn

αn

()1 1G , ;w= αy ε

()2 1 2G , ;w= αy y
 ………………...

()1n n nG , ;w−= αy y

A final vector yn represents a mapping of the string ()1 2 n... A∗= α α α ∈α by a
p-dimensional real vector () () p

p ,y,...,y,y 1021 ∈=y

Empty token ε is coded by p-dimensional vector composed entirely of 0.5-entries

() ()0 5 0 5 0 5 0 1 p. , . ,..., . ,ε = ∈y

Priesvitka 8

A way of realization of the inverse mapping
(real vectors of fixed width onto string)

The inverse parametric mapping ()ŵĜ is specified as follows

() ()ŵ;Ĝ, RL yxx =

Priesvitka 9

A code y=yn is recurrently decoded as follows

εα1

yn

yn-1

α2

y2

y1

αn-1

αn

() ()1n n n

ˆ ˆ, G ;w− α =y y

() ()2 1 1n n n
ˆ ˆ, G ;w− − −α =y y

……………………

() ()1 2 2
ˆ ˆ, G ;wα =y y

() ()1 1
ˆ ˆ, G ;wε α = y

Note: Applying this recurrent calculation we obtain from the vector y by making use
the inverse mapping ()ŵĜ a token sequence an, an-1, …, a2, a1, which constitutes the
string α.

Both mappings G(w) and ()ŵĜ are unified to auto-associative
mapping transforming strings onto strings

Priesvitka 10

G w()

... ...
x´L

y

x´R

G w()

... ...

...

xL xR

Priesvitka 11

()w;,G RL xxy =

() ()ŵ;Ĝ, RL yxx =

↓

() ()()ŵ;w;,GĜ, RLRL xxxx =′′

Composite mapping is auto-associative

↓
() ()()ŵ;w;,GĜ, RLRL xxxx =

Priesvitka 12

A fulfillment of this condition depends on the parameters of both mappings G and Ĝ .
Let us define an objective function

() ()()(
()())2

2

2
1

RR

LL

ŵ,w

ŵ,wŵ,wE

xx

xx

−′

+−′=

If composite mapping GĜ is auto-associative, then this objective function should
be vanishing

Conclusion: A condition that a composite mapping GĜ
is auto-associative can be achieved by minimizing the
objective function E with respect to its parameters.

Priesvitka 13

This minimization problem is realized by the steepest-descent method (the simplest
gradient method)

() ()
()t

tt

w
Eww ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

λ−=+1

() ()
()t

tt

ŵ
Eŵŵ ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

λ−=+1

where λ is a small positive coefficient called the learning rate.

How to learn the auto-associative composite mapping GĜ ?

Priesvitka 14

Let us introduce the notation
() ()()

()ŵ,w;,G
ŵ;w;,GĜ,

RLtot

RLRL

xx
xxxx

=
=

A string () ∗∈=α Aa...aa n21 is used as a training object of the composite mapping
GĜ

An outline of adaptation process

Priesvitka 15

Gtot

xL xR input activities

calculated output activities

required output activities

xL

xL

xR

xR

=

Δw training object

A string () ∗∈=α Aa...aa n21 from the training set corresponds to n learning tasks
(that are often characterized as a “moving target” problems)

Priesvitka 16

The last vector yn is as a final output from the RAAM mapping Gtot. If this mapping
is auto-associative (i.e. input and output are equal), then yn is a vector code of the
string α. Formally

()ŵ,w;Gtotn α== yy

() () p
tot ,Aŵ,wG 10: →∗

Priesvitka 17

G

e

y1

α1

G
y2

yn-3 αn-2

G
yn-1

yn-2 αn-1

G
yn

yn-1 αn

Step 1 Step 2 Step n

.........

G

e

y1

G

y2

G

y3

G

yn

Step 1 Step 2 Step 3 Step n

.........

α1 y1 α2
y2 α3

yn-1 αn

Step 3

Coding of a string into
a vector

=(, ,...,) α α α α ∈1 2 n A*
y=(, ,...,)y y y1 2 p ∈(0,1)p

Decoding of
into a string

a
 =(, ,...,) α α α α ∈1 2 n A*

vector y=(, ,...,)y y y1 2 p ∈(0,1)p

Priesvitka 18

 Recurrent construction of numerical code represented by an
n-dimensional real vector y∈(0,1)p

The resulting code is assigned to a
string α=(a1a2…an). This construction
is composed of n successive steps,
where the weight and threshold
coefficients are updated when input
activities (y(i-1),code(ai)) are different
from output activities () ()()i i

L R,′ ′x x .
Waved vertical lines mean that
activities of top vertices are set equal
to activities of bottom vertices. The
numerical code y assigned to the
string α is determined by the resulting
n-th vector of hidden activities,
code(α)= y(n).

Priesvitka 19

How to calculate gradient of the objective function ?

() ()()(
()())2

2

2
1

RR

LL

ŵ,w

ŵ,wˆ,ŵ;,wE

xx

xx

−′

+−′=ϑϑ

Priesvitka 20

Partial derivatives of E with respect to the parameters w and ∂ŵ are determined as
follows

() ()
w
xxx

w
xxx

w
E R

RR
L

LL ∂
′∂

−′+
∂

′∂
−′=

∂
∂

() ()

() ()
ŵ
yxx

ŵ
yxx

ŵ
y

y
xxx

ŵ
y

y
xxx

ŵ
E

RRRLLL

R
RR

L
LL

∂
∂

δ−′+
∂
∂

δ−′=

∂
∂

∂
′∂

−′+
∂
∂

∂
′∂

−′=
∂
∂

♦ Partial derivatives Lx w′∂ ∂ , Rx w′∂ ∂ , and ˆy w∂ ∂ can be calculated if we know functional forms of
dependencies of variables on parameters w and ŵ .

♦ The term δ corresponds to an error injection to the bottom mapping block G(w) from the top mapping
block ()ˆ ˆG w

♦ Partial derivatives are calculated in such a way that in the first stage are calculated those ones that
correspond to the top mapping block and then in the second state those ones that correspond to the
bottom mapping block – an analogue of the so-called back propagation method.

Priesvitka 21

An actual realization of mappings G(w) and ()ŵĜ by feed-forward
neural networks composed of two layers

G(w) :

() () () ()

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ϑ= ∑∑

==

q

j

R
j

R
ij

p

j

L
j

L
ijii xwxwty

11
, where () 1

1 xt x
e−=

+

Priesvitka 22

()ŵĜ :

() () ()

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ϑ= ∑

=

p

j
j

L
ij

L
i

L
i yŵtx

1

() () ()
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ϑ= ∑

=

p

j
j

R
ij

R
i

R
i yŵtx

1

Priesvitka 23

() () ()

1

p
L L L

i i ij j
j

ˆx t w y
=

⎛ ⎞
′ = ϑ +⎜ ⎟

⎝ ⎠
∑

() () ()

1

p
R R R

i i ij j
j

ˆx t w y
=

⎛ ⎞
′ = ϑ +⎜ ⎟

⎝ ⎠
∑

() () () ()

1 1

p q
L L R R

i i ij j ij j
j j

y t w x w x
= =

⎛ ⎞
= ϑ + +⎜ ⎟

⎝ ⎠
∑ ∑

Unified network corresponding to composed mappings GĜ is

() :ŵ,wGtot

Priesvitka 24

A back-propagation approach

for construction of partial derivatives of the objective function

(1) Output neurons

()
() ()() () ()()L

i
L

i
L

i
L

iL
i

xxxxE ′−′⋅−′=
ϑ∂
∂ 1

 ()
() ()() () ()()R

i
R

i
R

i
R

iR
i

xxxxE ′−′⋅−′=
ϑ∂
∂ 1

() () jL
i

L
ij

yE
ŵ
E

ϑ∂
∂

=
∂
∂ , () () jR

i
R

ij

yE
ŵ

E
ϑ∂
∂

=
∂

∂

Priesvitka 25

(2) Hidden neurons

() ()
()

()
()

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ϑ∂
∂

+
ϑ∂
∂

−=
ϑ∂

∂
∑∑
==

R
ji

q

j
R
j

L
ji

p

j
L
j

ii
i

ŵEŵEyyE
11

1

()
()L
j

i
L

ij

xE
w
E

ϑ∂
∂

=
∂
∂ , ()

()R
j

i
R

ij

xE
w

E
ϑ∂

∂
=

∂
∂

Priesvitka 26

How to update

the neural-network coefficients ?

We use standard gradient steepest-descent optimization technique accelerated by the
so-called momentum method

()() ()()
()

()
()()tL
i

t

L
i

tL
i

tL
i

E
ϑΔμ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

ϑ∂
∂

λ−ϑ=ϑ +1

where ()() ()() ()()1−ϑ−ϑ=ϑΔ tL
i

tL
i

tL
i is a difference of ()L

iϑ from the last two iterations.

Priesvitka 27

Other network coefficients are updated by the similar way

()() ()()
()

()
()()tR
i

t

R
i

tR
i

tR
i

E
ϑΔμ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ϑ∂
∂

λ−ϑ=ϑ +1

()() ()()
()

()
()()tL
ij

t

L
ij

tL
ij

tL
ij ŵ

ŵ
Eŵŵ Δμ+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

λ−=+1

()() ()()
()

()
()()tR
ij

t

R
ij

tR
ij

tR
ij ŵ

ŵ
Eŵŵ Δμ+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

λ−=+1

Priesvitka 28

Similarly, network parameters for hidden neurons are updated by

() ()
()

()t
i

t

i

t
i

t
i

E
ϑΔμ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ϑ∂

∂
λ−ϑ=ϑ +1

()() ()()
()

()
()()tL
ij

t

L
ij

tL
ij

tL
ij w

w
Eww Δμ+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

λ−=+1

()() ()()
()

()
()()tR
ij

t

R
ij

tR
ij

tR
ij w

w
Eww Δμ+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

λ−=+1

Note: The momentum term in above update formulae helps to overcome local minima in the initial stage
of optimization, in general, it integrates the effects of previous update steps. The momentum term μ is
usually taken from

0 3 1 0. .≤ μ <

The optimization process is started by randomly generated network coefficients from the interval [-1,1].

Priesvitka 29

RAAM networks applied to coding of linear token strings may be

interpreted as a special type of recurrent neural networks.

RAAM network treated as a recurrent neural network. A loop between left input
neurons and hidden neurons is created. The waved line means that activities of left
input neurons are set equal to activities of hidden neurons.

Priesvitka 30

Activities of single neurons are formally determined by
()L LO′ =x y , ()R RO′ =x y
()L RH ,=y x x , L =x y

Activities y of hidden neurons are determined by a nonlinear relation
()RH ,=y y x

If is is solved iteratively, stating from solution y(0) we get the following recurrent
scheme

() ()()t t
L LO′ =x y , () ()()t t

R RO′ =x y
() () ()()1t t t

RH ,−=y y x ,
for t=1,2,… . If this recurrent is diagrammatically visualized, then we immediatelyget
a scheme already presented in transparency 18

Priesvitka 31

Unfolded RAAM neural network

y
xL xR

xRxL

code()α1

code()α2

code()αn

y(1)

y(2)

y(n)

=y(-1)n

y(0)

xL

xL

xR

xR

(2)

(2)

(2)

(2)

xL

xL

(1)

(1)

xL

xL

(n)

()n

xR

xR

(1)

(1)

xR

xR

(n)

()n

.. .
...

.. .
..

step 1

step 2

step n

Priesvitka 32

The End

