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Abstract. Requirements and priorities for modern recommender systems 

grow and change hand in hand with the continuous growth of Internet users. 

In this paper we focus on aspects such as scalability, flexibility and speed 

of recommender systems, which nowadays play an important role. We 

propose novel hybrid recommender system, which utilizes user behaviour and 

context, items’ content and items' popularity and recency. We evaluate our 

approach in the domain of news articles, processing streaming data and 

computing recommendations online, in real-time. Conducted evaluations 

showed the benefits of using article trendiness as a strong component in the 

process of computing recommendations. 

1 Introduction and related work 

Information overload is nowadays a serious issue on Web. Users don’t have the time, neither 

the resources or skills to manually search and filter for items which they seek. Personalized 

recommendations are great way to reduce and eliminate this problem. Furthermore, it helps users 

to discover new items, which they wouldn’t be able to find by the means of standard navigation. 

Other than that, personalized recommendations help with increasing the commercial revenue as 

well. Therefore, it is a fairly popular topic not only in the academic world, but also between the 

tech giants like LinkedIn [1], Netflix [2] or Amazon [3], where recommendations play a key role 

in the user experience. 

Another prevailing problem, which appears with the enormous traffic and number of users 

the popular sites have to serve, is the aspect of scalability. Recently, methods like distributed 

systems, GPU matrix computations or client-server computation distribution [4] have enabled 

for real-time processing of streaming data on a large scale. 

Majority of established approaches for personalized recommendations fall into the categories 

of collaborative filtering and content based recommendations. Each of these approaches comes 

with it’s downsides (e.g., cold start problem of a new item or new user, long tail problem), which 

hybrid recommender systems usually help to eliminate [5]. For long, data processing and 

computations at large scale have been limited by existing technology or software. With the 

introduction of map-reduce computation model, now also available through in-memory 
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computation, or the massive growth of NoSQL databases, recommender systems are nowadays 

able to achieve the required scalability and efficiency needed for the Web scale. 

Nowadays, collaborative filtering approaches, for example using a scalable k-NN algorithm 

[6] or matrix factorization [7, 8], present the state of the art method for recommender systems. 

Most successful and widely used are matrix factorization processing user-item association matrix 

[9].  

In [9] Shi et al. present a comprehensive survey of the state-of-the-art collaborative filtering 

and latest challenges in the domain of recommender systems. They identified the incorporation 

of social recommendations and additional user interaction data (e.g., context), cross domain 

and group collaborative filtering as the arising key challenges to the future of collaborative 

filtering. 

2 Scalable and flexible recommendation approach 

In this paper, we propose a scalable hybrid recommender system, with focus on a fast response 

time, scalability and flexibility in regard to the system workload and available resources. 

Abstractly, it can be separated into two subparts, first consisting of a real-time online computation 

of recommendations, the second of computing offline user models. Our hybrid approach can be 

classified as a meta-level, mixed or weighted, depending on the form of final recommendation 

aggregation. In the following sections, we describe respective recommender modules for hybrid 

recommender system in the domain of news articles, as outlined on the Figure 1. 

 

Figure 1. Proposed scalable hybrid recommender approach. 
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2.1 Content based recommendation 

Research in natural language processing (NLP) and its approaches to content similarity estimation 

using LDA (Latent Dirichlet allocation) [10] or LSA (Latent semantic analysis) [11] have recently 

become fairly popular and successful. If combined with SVD (Singular value decomposition), 

these algorithms provide a scalable way to cluster items and infer topics based on their content. In 

our work we opted for a simpler and faster approach, utilizing direct content similarity estimation 

between item pairs. 

On top of static item content comparison, we incorporate sentiment and relevance of 

extracted keywords or entities into the recommendation process. This information can be extracted 

from the content of items, e.g., in the domain of news articles we use article title and text as source 

of keyword extraction. This way, we can identify user’s probable attitude towards certain topics 

(election parties, war etc.), entities (e.g., Steve Jobs, England) or extracted keywords. Given this 

information, we can narrow the recommendations to the users with items containing similar 

sentiment or attitude in general towards certain entities or topics, in which the user has previously 

shown interest. 

2.2 Collaborative filtering 

Since Netflix prize [8], matrix factorization has become a state-of-the-art method for computing 

recommendations with collaborative filtering. We chose alternating least squares (ALS) algorithm, 

which can compute latent factors describing users and items from user-item association matrix. 

ALS algorithm provides us with an option to specify a weight to a user-item interaction, if it turns 

out that it is desirable to differentiate between user clicking on a certain recommendation or a user 

naturally visiting an item. More specifically we are using ALS-WR approach, as described in [12]. 

ALS-WR uses a normalization parameter 𝑙𝑎𝑚𝑏𝑑𝑎, which tackles scalability and sparsity issues 

in matrix factorization. One of the nice properties of ALS-WR is that the accuracy of the method 

monotonically improves with the number of algorithm iterations. 

ALS model is computed periodically in the background with latest subset of user-item 

interactions narrowed by their occurrence time. Computation of a model is distributable and we 

can easily set number of iterations based on the current system workload. The periods between 

model re-computation can be also adjusted according to the workload, which also adds to the 

flexibility property of our proposed approach. 

2.3 Popularity and recency of items 

Popularity and recency are two aspects of items, that we combined together to form a so-called 

trendiness recommender. We model popular and recently created or updated items in certain time 

intervals. In addition to global counters, we monitor the popularity and recency of articles 

in the subsets of items, as per their categorization by content. For popularity, we use integer 

counters of item visits occurrences in the respective time interval. For recency aspect, we propose 

a more sophisticated approach. Our goal is to be able to assign the same value of recency to an 

article published 10 minutes ago, as to an article published 1 hour ago (example thresholds). We 

are able to achieve it, by using Equation 11, which creates a gauss like figure of recency in respect 

to the times of item creation and their last update. 𝐷𝑒𝑐𝑎𝑦 and 𝑠𝑐𝑎𝑙𝑒 parameters enables the fine 

grained time decay property of recency recommender module. 

 𝑟𝑒𝑐𝑒𝑛𝑐𝑦(𝑎𝑟𝑡𝑖𝑐𝑙𝑒) = 𝑤1 ∗ 𝑡𝑖𝑚𝑒𝑃𝑒𝑛𝑎𝑙𝑡𝑦(p𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑𝑎𝑡) − 𝑤2 ∗ 𝑡𝑖𝑚𝑒𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑎𝑡) (1) 

𝑡𝑖𝑚𝑒𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑡𝑖𝑚𝑒) =  𝑒𝑥𝑝(− 
𝑚𝑎𝑥 (0, |𝑡𝑖𝑚𝑒 −   𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑𝑎𝑡| − 𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑆𝑡𝑎𝑟𝑡)2

2(−
𝑠𝑐𝑎𝑙𝑒 2

2
∗ log (𝑑𝑒𝑐𝑎𝑦))

 

                                                           
1 https://www.elastic.co/guide/en/elasticsearch/guide/current/decay-functions.html 
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We either use the subsets of our so-called trending articles directly as top-n recommendations, 

or push them further down our method, where they serve as an input to some of the more 

computational expensive methods for recommendation generation. 

Our reasoning behind this approach is strongly tied with the current trends of navigation 

on the Web. On majority of sites you can find lists of most popular items, new and current items, 

that narrows the information and navigation space for users. This especially applies to the domain 

of newspaper articles, where users are visiting news portals in order to find new and current 

information. These items could stand a higher chance of actually being visited by user, because 

on average, majority of users tend to be interested in some of the most popular and recent topics. 

We proved this assumption correct in our evaluations. 

2.4 Contextual recommendations and clustering 

Nowadays, context is getting ubiquitous and as seen in other works [13], it is a great source 

of information, which we can use for clustering user recommendation requests. In our method, we 

use contextual data like geo-location, gender, estimated age or salary, ISP and similar properties. 

By using streaming k-means algorithm, specifically the kmeans++ implementation [14], we are 

able to perform clustering in real-time, while maintaining up-to-date representation of the clusters. 

Each recommendation request is assigned to a cluster, based on the properties of the request 

context. Inside of each of these cluster, we hold machine learning models used for classification 

and ranking items of items. Classification outcome and rank of items depend on the relevance and 

confidence of respective items being clicked or visited by user. 

For classifying and ranking items we use two scalable and parallelizable approaches: 

decision trees (Random forest) and learning to rank (Listnet). Learning to rank and Listnet 

algorithm specifically, have already been proved [15, 16] to be a suitable choice for large scale 

machine learning model construction. In our approach we are using them as estimators of user’s 

probability of actually clicking on a recommendation. Input to machine learning models is a 

narrowed subset of trending articles and outcome is a set of top-n recommendations with 

respective confidence weights, based on the learned model for a specific cluster, to which a 

recommendation request was assigned depending on contextual data. These models are updated 

and reconstructed periodically in the background with the latest data. 

2.5 Aggregation of recommendations 

Our proposed approach provides us with variety of possible combinations and aggregation 

of recommender modules within our hybrid system. The aggregation process is exactly the place, 

where the flexibility and adaptive properties of our approach can show off. Under ideal conditions 

and state of a recommender system (low workload), our approach uses all of the described 

recommender modules. Trendiness module acts as a meta-level recommender, which generates 

input subsets for other recommender modules (e.g., contextual). Collaborative filtering and content 

based recommendations, which work with constructed user models provides recommendations 

based upon the user’s behaviour and user models. Recommendations from the respective 

recommender are then grouped and their confidence is summed up, along with the weight of each 

of recommender modules. 

Our approach eliminates cold start issue of a new user in the system. Even for an unknown 

or new user, we still have on-line contextual data and information about the currently visited item. 

Altogether with popularity and recency information, we can identify and recommend relevant 

articles to the user. Incoming request is assigned to a cluster by the on-line information 

and a machine learning model (learning to rank, random forest) ranks subset of trending articles 

according to the predicted cluster and user. As a response to the recommendation request, we 

present top-n recommendations to the user. 
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3 Evaluation 

As explained in the previous section, one of the key points of our proposed approach is the focus 

on popularity and recentness of articles. In order to prove this hypothesis, we evaluated the effect 

of adding popularity and recency aspects to a simple k-nn recommender. In the k-nn algorithm, 

nearest neighbors were chosen by the co-occurrence factor based on item to item similarity [3]. 

Similarities were computed using log likelihood ratio of impression occurrences. Evaluations were 

performed on an offline dataset, consisting of ~12 million impressions gathered from slovak online 

newspaper publisher SME.SK during a week in October 2009.  

As shown in the Table 1, we were able to improve precision@10 and NDCG@10 metrics 

by over 100%, when we added popularity and recency aspects into the recommendations process. 

With items impressions, we have only binary scale (seen/not seen) which is unable to fully utilize 

NDCG properties. This effect can be seen also by the similar improvement rate of both of the used 

metrics.  

Table 1. Evaluation of article trendiness increase in precision and NDCG metrics. 

No. of 

nn 

Without popularity and recency With popularity and recency (exp. boosting) 

precision @10 NDCG@10 precision @10 NDCG@10 

2 0.0086 0.0410 0.0179  + 108% 0.0803  + 96% 
3 0.0093 0.0411 0.0190  + 104% 0.0792  + 93% 
5 0.0114 0.0495 0.0222  + 95%    0.0906  + 83% 

7 0.0104 0.0453 0.0228  + 19% 0.0913  + 102% 
10 0.0108 0.0446 0.0243  + 125% 0.0952 + 113% 
15 0.0107 0.0414 0.0229  + 114% 0.0860  + 108% 
20 0.0109 0.0418 0.0229  + 110% 0.0840  + 101% 

30 0.0103 0.0412 0.0225  + 118% 0.0809  + 96% 

4 Conclusions and future work 

In this paper, we have proposed hybrid recommender system with focus on the scalable 

and extensible architecture, flexibility of the system and ability to adapt to the system workload. 

Generated recommendations are computed with the use of up-to-date information, whether it is 

users behaviour and context or item content. As a unique feature of our approach, we highlight 

recommendation requests clustering based on the user’s context, which reduces information space 

and enables for frequent and continuous updating of underlying machine learning models used 

for generating recommendations. 

So far, we have performed only a basic and partial evaluation of our proposed hybrid 

recommender approach. We yet have to evaluate usage of clustering of incoming requests, 

scalability and flexibility of our approach. We plan to perform online evaluations with streaming 

data, where we will focus on CTR metric. Furthermore, we will perform rigorous and repeatable 

evaluations concerning scalability and accuracy of our proposed recommender system with 

prepared datasets created from acquired streaming data. 

In terms of extending our proposed method, there are several opportunities for improvement 

and experimenting. Inclusion of information gathered from social data could serve as a great 

addition to the user model. For example, if we had performed latent topic analysis (LDA/LSA), we 

could map these identified topics to not only topics identified inside the items content, but also to 

the user’s interests, as expressed on their social network profiles. 
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