
Interactive System for Creation of Notes

Martin NEMČEK∗

Slovak University of Technology in Bratislava
Faculty of Informatics and Information Technologies

Ilkovičova 2, 842 16 Bratislava, Slovakia
xnemcekm@stuba.sk

Abstract. We are overwhelmed by information from various topics. The chal-
lenge in education is to create notes which covers important subset of infor-
mation. There are known methods to extract information from text. In this
article we propose a system to extract the notes from text which are important
for educational purpose, so it should create personalized notes for students. We
use mainly syntactic text analysis. Notes are created by help of part-of-speech
tags and dependencies between words in sentences. The outcome will be an
interactive system for creating notes based on learned rules from user.

1 Introduction

Computers are not able to understand information in natural language. In our proposed system the
notes are created from sentences by extracting relevant information from them. We use syntactic
analysis of sentences and extract relations and dependencies between words from these sentences.
The final result of our proposed method are personalized notes. The user will be able to modify the
automatically created notes. The system will then learn new rules for sentence to note transformation
from these changes and takes them into account for the next time.

2 Our proposed system

A rule consists mainly from two parts – list of data of original sentence and list of data of note.
Each entry in list of data of original sentence and list of data of note contains these parts: relation
name and list of grouped dependencies with the same relation name. Each dependency contains a
governor token, a dependent token and its position considering all dependencies. The governor and
dependent token consists of Part-Of-Speech (POS) tag and index of word in sentence to which is the
token connected. Index of the token is bounded with a position of its word in sentence.

Dependencies from the second list are applied to sentence to create a new note. The rule may
order to create a compound note from a sentence. The compound note is composited of some simple
sentences. The positions in sentence on which the note should be split into smaller sentences are
kept within the rule.

∗ Bachelor study programme in field: Informatics
Supervisor: Miroslav Blšták, Institute of Informatics and Software Engineering, Faculty of Informatics and
Information Technologies STU in Bratislava

IIT.SRC 2016, Bratislava, April 28, 2016



Innovative Applications

When processing a sentence an applicable rule has to be looked up in database before creation of
the note. Dependencies of rule and dependencies of the sentence being processed has to correspond
to each other. Evaluation is based upon two conditions. The sentence that is being processed has
to have the exact amount of entries in list of data of original sentence while these entries contain
exactly the same relation names as the rule’s relation names.

The applicable rule is found if these two conditions are met. However, the conditions can cause
a situation that more than one rule is found. In this case we have to calculate the match probability of
this sentence and the original sentence obtained from the rule. The rule with the highest probability
of the match is applied.

Calculating the match consists of several steps. First, the POS tags match of governor and
dependent tokens is calculated separately. Indices of governor and dependent tokens are calculated
also separately. These first steps determine if the sentence contains arbitrary dependency with same
value of POS tag or index. In followed step is determined a half-match of dependencies. Half-match
of dependency is match of POS tag and index at the same time at governor or dependent token of
dependency. We calculate matches of POS tags and index of governor or dependent token for every
dependency. Finally, in the last step we calculate the number of absolute-matched dependencies.
Absolute-match dependencies is the total match of POS tags and indices in governor and dependent
tokens. Every step has assigned a rating. If a condition in the step is evaluated as true, the rating of
the step is added to the final result. The final result is a percentage value of the match. The rating
is based on importance of the step in calculating a precise match, while depending on the number
of steps and dependencies, so the final result cannot exceed a limit of 100%. A pseudo code for an
algorithm calculating the match is outlined in Algorithm 1 and specific example is shown in Figure 1.

Algorithm 1 Calculating match.
1: procedure CALCULATEMATCH(sentence, originalDependencies)
2: oneCompareTypeRating ← calculate percentage rating of one comparison
3: for all originalDependencies do
4: if count(sentence, dependency) = count(originalDependencies, dependency) then
5: match← match + oneCompareTypeRating

6: counter ← counter + count(originalDependencies, dependency)
7: oneCompareTypeRating ← oneCompareType/counter
8: for all originalDependency do
9: for all dependency do

10: for all comparison do
11: if applyComparison(sentence, comparison, dependency) then
12: match← match + oneCompareTypeRating

return match

If rule look up does not find any applicable rule, it means that the system have not processed the
same or similar sentence yet. A manual rules of parser are used in this case. The output of the parser
is a note. A new rule is created based on the note. Dependencies of original sentences are taken and
used to create a list of data of original sentence. This list is then assigned to the rule. Dependencies
of note are used to create a list of data of note which is then also assigned to the rule. The sentence
ends are determined depending on how many sentences the note contains. POS tags and indices of
tokens are stated by the corresponding words of the original sentence and the newly created note.

By the principle of rule look up, the sentence being processed has to contain dependencies from
the list of data of original sentence and also dependencies from the list of data of note.

The process of applying a rule has several steps. For each dependency in the list of data of
original sentence, the respective dependency is looked up in sentence that is being processed. The
word corresponding with dependent token from the looked up dependency is taken and added to the
note on its index position. In case of dependency relation nominal subject the word corresponding



Martin Nemček: Interactive System for Creation of Notes

with governor is also added. After processing all dependencies the last minor changes are done such
as capitalization of the first letter of the note, splitting note into more sentences if rule defined so.
Algorithm 2 shows pseudo code of the process of applying rule on sentence.

Algorithm 2 Applying rule.
1: procedure APPLYRULE(sentence, rule)
2: note← new Note
3: for all ruleDependencies do
4: dependency ← findDependency(sentence, ruleDependency)
5: if isFound(dependency) then
6: add(note, getDependent(dependency))
7: if isNominalSubject(relation(dependency)) then
8: add(note, getGovernor(dependency))
9: splitToSentences(note, sentencesEnds(rule))

return note

Figure 1. Example sentences.

Let us consider example from Figure 1. We have rules for two sentences and we are processing
the first one. In this situation, there are at least two rules which are applicable for the sentence
a. Assume that we are calculating match with the sentence b. We iterate over all dependencies of
processed sentence a. The first dependency is det with the governor token NN (noun) and index 3
and the dependent token DT (determiner) and index 1. First, we find out, if the sentence b contains
any dependency with tokens NN or DT and index equals to 1 or 3. This is the separate calculation of
POS tags and indices. Then, we try to find in the sentence b any dependency, which has dependent
or governor token tag of type NN and index equal to 3 or tag of type DT and index equal to 1. This
is only the half-match step. As the last step, we check if sentence b contains dependency, where the
governor token is NN and index is equal to 3 and the dependent token is DT and its index is 1. If any
of these step were matched, the rating of that particular step is added to the final result and iteration
continues with following dependency until all dependencies were iterated over.

Acknowledgement: This work was partially supported by the Scientific Grant Agency of Slovak
Republic, grant No. VG 1/0646/15.


