
IIT.SRC 2016, Bratislava, April 28, 2016

PerfectPlaggie: Source Code Plagiarising Tool

Juraj PETRÍK*

Slovak University of Technology in Bratislava

Faculty of Informatics and Information Technologies

Ilkovičova 2, 842 16 Bratislava, Slovakia

petrik@fiit.stuba.sk

Abstract. This paper presents new tool for creating plagiarism copies of

existing source codes, which supports multiple levels of plagiarism. The tool

is especially helpful for creating large datasets of source codes, which will be

used for benchmarking different methods for measuring source code

similarity. The hypothesis of creation of such a tool is supported by perfect

plagiarism experiment – which shows, that it is pretty easy to trick existing

source code plagiarism detection systems.

1 Introduction

According to Merriam-Webster dictionary is plagiarism defined as:

 to steal and pass off (the ideas or words of another) as one's own

 use (another's production) without crediting the source

 to commit literary theft

 present as new and original an idea or product derived from an existing source

Plagiarism is serious problem in academic field – in 2002 a survey was performed, where students

of Swinburne and Monash University were asked if they were ever engaged in academic

dishonesty – 85.4% of Swinburne University students and 69.3% of Monash University students

admitted it. [1]

Another study done at Faculty of Informatics and Information Technologies STU in

Bratislava states that 33% of students admitted that they have ever created plagiarism during their

study and 63% of them have ever given their work to someone to plagiarize it. As you can see

software plagiarism is a big problem in academic sphere, but in commercial is too. [4]

For instance, events such as Google vs Oracle shows that software plagiarism is even worse

problem than we thought. Jury did not find Google guilty of violating any Oracle’s patents, but it

was clear, that Google had plagiarized parts of Oracle’s source codes. [5]

Software plagiarism is commonly detected by automated tools, but the problem with these

tools is, that they are mostly not designed to resist sophisticated obfuscation attacks. [7]

* Doctoral degree study programme in field: Software Engineering

Supervisor Assoc. Professor Daniela Chudá, Institute of Informatics and Software Engineering, Faculty of

Informatics and Information Technologies STU in Bratislava

 Juraj Petrík: PerfectPlaggie: Source Code Plagiarising Tool

Another essential problem in this area is lack of large enough datasets with obfuscated

source codes with different types of obfuscation. These datasets are crucial for benchmarking new

methods and tools to fight plagiarism.

Therefore, idea of tool which will be able to automatically produce this dataset is described

in this paper.

2 Related work

We can divide obfuscation attacks to two main categories [6]:

 Lexical changes

 Structural changes

Lexical changes can be done in text editor and do not require any special knowledge of

programming language. Examples of such changes are adding/removing/modification of

comments, source code formatting, changing identifier names.

Structural changes need some sort of special knowledge of programming language

(understanding of the language) and are very language dependent. Loop changes (while<->for<-

>do while), condition changes (if<->case<->ternary operator) or statement order replacement are

examples of structural changes.

2.1 Source code obfuscators

2.1.1 ARTIFICE

This tool performs transformations directly on source codes. Obfuscation types are as follows –

renaming of variables, if else statements are transformed to ternary operators and vice versa, while

statements are transformed to while and vice versa, expanding variable definitions, variable

assignments.

2.1.2 ProGuard

ProGuard is a free Java class file shrinker, optimizer, obfuscator and preverifier. It detects and

removes unused classes, fields, methods and attributes. It optimizes bytecode and removes unused

instructions. It renames the remaining classes, fields, and methods using short meaningless

names. [8]

It is able to create more compact code, make software harder to reverse-engineer or detect

dead code. However, ProGuard works on byte code level – so there is need of additional steps to

be done – compiling and decompiling of the bytecode to get obfuscated source code.

2.1.3 yGuard

yGuard is a free Java bytecode obfuscator and shrinker that improves your software deployment

by prohibiting unwanted access to your source code and drastically shrinking the processed Jar

files at the same time. [12]

This tool could do name obfuscation – replacing package, class, method, field names with

random strings. This tools can also do code shrinking – code shrinking engine detects which parts

of codes could not be reached from a set of given entry points. These not needed parts are then

removed.

Similar to ProGuard this tools works on byte code level, so compiling to bytecode and

decompiling from bytecode is required to get source code.

 Intelligent Information Processing

3 Perfect plagiarism experiment

To support the hypothesis, an experiment of manual plagiarism creation was done. The aim of this

experiment was to show that it is possible to create “perfect” plagiarism source code – the

modified version of original file will not be marked as suspicious (similarity percentage is below

threshold value) by any of chosen source code similarity checkers.

For this experiment MOSS [3][10], JPlag [9] and SIM were selected as representants of

plagiarism detection systems – because these tools are commonly used in academic area for

evaluating student’s exams and are de facto used as standard benchmarking tools. Additionally,

Simian was chosen, to see if there is any difference between special plagiarism detection systems

and system used for software refactoring.

3.1 Source code sample

Red-black tree java implementation downloaded from the internet website providing source code

samples was used in this experiment. This data structure implementation was chosen because it is

typical student programming assignment at universities. Java as programming language was

selected because it is most used programming language worldwide, also it is the most popular

language among students.

3.2 Plagiarising

The goal of this experiment is too show, that it is possible to create perfect plagiarism in relatively

short time. The person who was doing these obfuscations to achieve perfect plagiarism is

simulating multiple levels of programming skills – to divide these copies by difficulty.

Additionally, to simulate automatic obfuscation, the programmer was doing this changes without

knowledge, what is this programming actually doing. In next three chapters these levels with

results are described – first means that only beginner level is required to do this changes, second

level requires advanced knowledge of language and third required semi-expert skill in this

language.

3.2.1 First level

Just basic changes were done to the source code:

 Code formatting

 Comments removal

 Renaming of classes, methods and variables

Overall length of these changes was 10 minutes.

3.2.2 Second level

First level changes were done, plus some advanced changes:

 Loop changes (for->while, while->for…)

 Added new constants

 Negation of conditions

 Variable types

 Line ordering

Overall length of these changes was 30 minutes.

 Juraj Petrík: PerfectPlaggie: Source Code Plagiarising Tool

3.2.3 Third level

First level changes and second level changes were done, plus some more advanced changes:

 Parameters order

 Variable modifiers

 Wrapping of return values

 Merging of some methods

 Splitting of some methods

Overall length of these changes was 30 minutes.

You can see example of this obfuscation level in Figure 2 (left side is original source code

and on right side is obfuscated copy).

3.3 Discussion

Figure 1. Results of experiment represents results of completed experiment. First and second level

obfuscations are not problem for plagiarism detection systems, however for Simian even first level

changes are real problem. But third level changes are big deal even for specialized plagiarism

detection tools – mainly it is because of excessive amount of unnecessary code added (wrapping).

Figure 1. Results of experiment.

When we are adding a lot of unneeded code, these tools are unable to detect this kind of situation,

so the similarity percentage is naturally declining.

As we can see, it is easy to confuse standard plagiarism detection tools and it only took about

one hour – it is surely faster than to do assignment on your own. Another alarming finding is that

to do these changes it is not needed to be an expert in programming language, even the

programmer does not need to know what the program is doing in real. This problem is not

presented only in tested tools, but in other tools too. [11]

Based on these results I realized, that it is possible to create automated tool for creating

obfuscated source codes. These obfuscated source codes (produced by the tool) will not be

detected as suspicious (similarity value will be bellow threshold value) – to create perfect

plagiarism by machine.

First level Second level Third level

SIM 76 57 5

JPlag 95,3 73,8 5

MOSS 92 45 2

Simian 0 0 0

0

20

40

60

80

100

120

Si
m

ila
ri

ty
 %

 Intelligent Information Processing

Figure 2. Source code obfuscation example.

4 PerfectPlaggie

Name of this tool is derived from “Perfect plagiarism” and plagiarism detection system Plaggie

[2]. In next few chapters proposed design of this tool and planned supported obfuscation types are

described.

4.1 Design

Figure 3 displays important architectural parts of PerfectPlaggie tool. These parts are GitHub

crowler, file picker, obfuscator, tester.

GitHub crowler part will be searching for suitable projects on GitHub and downloading

them. Suitable project means, that the project will have unit and integration tests with enough code

coverage. Also it will ensure, that the downloaded project will be unique.

File picker part will pick only files, that will have 100% integration and unit test coverage –

this is crucial for tester part of the PerfectPlaggie. It will also select files, that are interesting for

dataset creation. The selection will be based on metrics such as LOC, NOM, MCC etc.

Obfuscator part will obfuscate source code files from file picker part. There will be multiple

options of obfuscations – they are described in next chapter.

Figure 3. Design of PerfectPlaggie.

for (;;) {

 if (x.compareTo(current.element) < 0)

 current = current.left;

 else if (x.compareTo(current.element) > 0)

 current = current.right;

 else if (current != nullNode)

 return current.element;

 else

 return null;

}

while (true) {

 if (x.compareTo(getCurrentNode().getNodeElement()) > ZERO) {

 setCurrentNode(getCurrentNode().getRightNode());

 } else if (x.compareTo(getCurrentNode().getNodeElement()) < ZERO) {

 setCurrentNode(getCurrentNode().getLeftNode());

 } else if (getCurrentNode() != getNillLeaf()) {

 return getCurrentNode().getNodeElement();

 } else {

 return null;

 }

}

 Juraj Petrík: PerfectPlaggie: Source Code Plagiarising Tool

Testing of these obfuscated copies is very important – in theory if everything is done right,

obfuscating will not change program behaviour, but we need to be sure. Thus, tester part will make

sure, that all unit and integration tests pass.

4.2 Supported obfuscation types

Most important is to hide from computer, that source code is plagiarized. But also important thing

is to think about that there is also possibility that some human expert will be also reviewing this

obfuscated source code. For example, totally random variable names are very suspicious and

therefore could trigger deep control of this code. Most important planned supported obfuscation

types are described below.

Comments – there are multiple possibilities what to do with comments in source code. But

we need to be very careful – because writing of comments is not so strict as writing source code,

so any similarity in comments is considered as very suspicious. The safest option is too delete all

comments.

Source code formatting – source code will be formatted according to programming language

conventions – so even if two codes have exactly same formatting it is not suspicious – because it is

convention.

Renaming of variables, methods, classes – random variable names or slight modification of

original names is too suspicious for human experts. So there need to be some kind of synonyms

dictionary for variables.

Conditions – the simplest method is to negate all conditions, but it is too easy to detect.

Reordering of parts in composition conditions seems like a headache for plagiarism detection

systems.

Line reordering – one of most effective methods for obfuscating, but also one of most

difficult to implement – need to be implemented with help of PDG (Program dependence graph).

Splitting/merging of methods - another relatively simple and effective obfuscation. But we

need to be careful with too much splitting or merging – there needs to be balance to be safe from

human experts detection.

Wrapping – effective and simple. Plus, wrapping also adds a lot of extra lines of codes – so it

is lowering similarity percentage by this way too.

Adding of redundant code – this can get very tricky. Because this added code must look and

must do similar tasks like original, otherwise it could get really suspicious.

5 Conclusions

This paper proposes design of source code obfuscating system called PerfectPlaggie. This tool is

designed to construct autonomously big datasets of obfuscated (plagiarized) copies from freely

available source codes.

The hypothesis that such a tool can be constructed is supported by perfect plagiarism

experiment. This experiment shows that it is not too complicated to create “perfect plagiarism” for

human, also it is not much time consuming.

This tool is unique – because it works directly on transformation of source code (not

bytecode), it is autonomous and user can choose what obfuscations he wants to be applied to

original source code.

Because this is proposal of such a tool, there needs implementation to be done in future, to

fully confirm or reject the hypothesis. Also I see potential in research for new obfuscation types,

but we need to create them that way, that even human experts will not get suspicious – and this is

really challenging task.

 Intelligent Information Processing

Acknowledgement: This contribution is the partial result of the project Research of methods for

acquisition, analysis and personalized conveying of information and knowledge, ITMS

26240220039, co-funded by the ERDF.

References

[1] Arwin, C., Tahaghoghi, S.M.M.: Plagiarism Detection across Programming Languages. In

Twenty-Ninth Australasian Computer Science Conference (ACSC2006). (2003). pp. 10.

[2] Ahtiainen, A., Surakka, S., Rahikainen, M.: Plaggie: GNU-licensed source code plagiarism

detection engine for Java exercises. In Proceedings of the 6th Baltic Sea conference on

Computing education research: Koli Calling. (2006). , pp. 141–142.

[3] Bowyer, K.W., Hall, L.O.: Experience using MOSS to detect cheating on programming

assignments. In Frontiers in Education Conference 1999 FIE99 29th Annual. (1999),

vol. 3, Piscataway, NJ, United States, pp. 13–18.

[4] Chudá, D. Návrat, P., Kováčová, B., Humay, P.: The issue of (software) plagiarism: A

student view. In IEEE Transactions on Education. (2012), vol. 55, no. 1, pp. 22–28.

[5] Fiducia, N.: When Two Worlds Collide: The Oracle And Google Dispute. Mondaq.com.

(2013). Available at: http://www.mondaq.com/unitedstates/x/271942/ [Accessed: 14 Feb

2016].

[6] Joy M., Luck, M.: Plagiarism in Programming Assignments. In IEEE Transactions of

Education. (1999), vol 42, no. 2, pp. 129-133.

[7] Juan, A.C.: Studying the Impact of Obfuscation on Source Code Plagiarism Detection.

January, (2014), pp. 1–39.

[8] Lafortune, E.: 'ProGuard' Proguard.sourceforge.net. (2013), [online] Available at:

http://proguard.sourceforge.net/ [Accessed: 18 Feb 2016].

[9] Prechelt, L. Malpohl, G., Philippsen, M.: Finding Plagiarisms among a Set of Programs with

JPlag. In Journal Of Universal Computer Science. (2002). vol. 8, no. 11, pp. 1016–1038.

[10] Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: Local Algorithms for Document

Fingerprinting. In Proceedings of the 2003 ACM SIGMOD international conference on on

Management of data - SIGMOD ’03. (2003), pp. 76–85.

[11] Tahir Ali, A.M. EL, Abdulla H.M.D., Snášel, V.: Overview and comparison of plagiarism

detection tools. In CEUR Workshop Proceedings. (2011). vol. 706, pp. 161–172.

[12] yWorks GmbH. yGuard - Java™ Bytecode Obfuscator and Shrinker. (2016). Available at:

https://www.yworks.com/products/yguard [Accessed: 18 Feb 2016].

