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Abstract—This paper investigates the effect of several post-
processing techniques on the accuracy and consistency of a
lightweight 3D object detection pipeline using camera and LiDAR
data fusion. The baseline camera-LiDAR fusion solution, which
we extend in this work, integrates a YOLO-based segmentation
with LiDAR point data, without further use of neural net-
works. This approach focuses on inference suitable for resource-
constrained environments. To enhance detection performance,
several improvements were introduced: bounding box height
calibration using segmentation masks and LiDAR depth data,
merging overlapping detections for cyclists, filtering background
points from bicycles, and optimizing the center position and
orientation of bounding boxes for elongated objects through
convex hull analysis and rotation optimization. The evaluation
conducted on the View of Delft (VoD) dataset confirmed that
these enhancements improved the mean Average Precision (mAP)
and Intersection over Union (IoU) for object classes car, cyclist,
pedestrian, motorcycle and truck.
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I. INTRODUCTION

In order to make roads safer, manufacturers equip vehicles
with automated driving solutions from a range of automation
levels. One of the most important parts of automated driving
solutions is the detection of traffic participants in 3D space.
Many solutions rely on the fusion of feature-dense RGB cam-
era images with the LiDAR point cloud, providing valuable
depth information, leveraging the complementary strengths of
these sensors. Recent research has demonstrated significant
advancements in sensor fusion methods [1–3], achieving state-
of-the-art results on established multi-sensor datasets such as
KITTI [4], nuScenes [5] and more [6], [7]. One of the most
frequently used object detection model is You Only Look Once
(YOLO) [8]. Although YOLO provides 2D bounding boxes,
when combined with depth data, 3D bounding boxes can be
obtained. The significant aspect that contributes to the popu-
larity of YOLO-based architecture is undoubtedly its real-time
performance and relatively low computational requirements.
Compiled smaller sizes of YOLO models can achieve real-
time performance even on CPU-only setups. Saucedo et al. [9]
proposed lightweight camera-LiDAR fusion for 3D object
detection and localization. The method utilizes the YOLOv8
model and Euclidean clustering of the point cloud and achieves
43.2% mIoU. A similar YOLO-LiDAR approach proposed by
Kieffer [10] was taken as a baseline for this work.

Deep learning models can effectively produce initial detec-
tions. However, studies have highlighted the value of com-
plementing the abilities of deep models with post-processing
techniques that refine these outputs. Such techniques are espe-
cially important in resource-constrained environments, where
the cost of additional processing with a neural network is
undesirable.
Both geometric and neural network-based post-processing
approaches have been proposed. Chen et al. [11] proposed the
post-processing method for bounding box refinement in 2D
using Histogram of Oriented Gradients (HOG) features. By
extracting the edge information of the object, borders of the
boxes were adjusted. DiffuBox [12] applies a diffusion-based
refinement on LiDAR point clouds, enhancing 3D detection
across domains without retraining the model. For road surface
defect detection, Li et al. [13] introduced a clustering and dual
threshold box filtering strategy. By combining advantages of
Weighted Box Fusion (WBF) and soft Non-Maximum Sup-
pression (NMS), their method outperformed both mentioned.

Our work focuses on evaluating the impact of various
post-processing methods on a CPU-based 3D object detection
pipeline that utilise YOLO segmentation masks to filter LiDAR
points and predict 3D bounding boxes. By applying techniques
such as bounding box height calibration, overlapping box
merging for cyclists, background points filtering, and rotation
optimization, we aim to enhance detection accuracy and con-
sistency, particularly in resource-constrained environments.

II. METHOD

In this section, we describe the details of the implementation
of the 3D object detection pipeline and the post-processing
techniques used to improve its accuracy.

A. Baseline method

As a baseline 3D object detection method, we have chosen
YOLO-LiDAR Fusion: Lidar-camera fusion for 3D object
detection in autonomous driving systems [10]. The model was
designed to perform the fusion of data from a RGB camera
and a LiDAR. In the pipeline, the RGB image is processed
using a YOLO segmentation model, producing segmentation
masks of detected objects.
The LiDAR point cloud is first filtered to match the field of
view (FOV) of the camera. The LiDAR points are projected
into the camera plane and further filtered using segmentation
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Figure 1. YOLO-LiDAR fusion model architecture, reprint from [10]

masks obtained in the previous step. Only points present within
the segmentation masks were preserved, effectively isolating
points belonging to detected objects. To remove noisy points
caused by the reflectance properties of certain parts of the
objects, the DBSCAN clustering algorithm is used.
Using the filtered points for each segmented instance an
oriented bounding box is generated using principal component
analysis (PCA) and approximation to the minimal bounding
box. The graphical representation of the original architecture
can be seen in Figure 1.

When tested on a laptop-grade CPU, the whole pipeline was
able to process 7 frames per second (FPS), which could be fur-
ther increased by using compiled version of the YOLO model.
These characteristics suggest that the YOLO-LiDAR Fusion
model could be suitable for resource-constrained environments
where a model with high computational requirements would
not be usable.

B. Post-processing methods

In following subsections the post-processing methods that
were used to refine predicted 3D bounding boxes by the
baseline method are described.

1) Bounding Box Height Calibration: The first enhance-
ment was focused on correcting the height of the bounding
boxes. For each detected object, the segmentation mask was
first eroded in order to reduce the influence of noisy or
ambiguous pixels near the edges. From the cleaned mask, the
minimum and maximum y coordinates of the polygon were
extracted, providing the vertical height of the object in the
image pixels.
The intrinsic parameters of the camera—specifically the verti-
cal focal length fy were used in conjunction with an estimated
average depth of the object obtained from the LiDAR point
cloud to convert this height into real-world measurements. This
depth was calculated as the average coordinate x of all 3D
LiDAR points projected inside the eroded mask, under the
assumption that x points in the camera’s forward direction.

The real-world height in meters was then calculated using
the pinhole camera model as stated in Equation 1:

hseg = hpix ·
(
davg

fy

)
(1)

Figure 2. Comparison of bounding boxes for car: the image on the left shows
the original bounding box for car (red), while the image on the right shows
the bounding box with fixed height of the box taken from segmentation mask
(red). Blue boxes represent the ground truth annotation.

Figure 3. Comparison of bounding boxes for bicycle: the image on the left
shows the original separate bounding boxes for bicycle and pedestrian (red),
while the image on the right shows the united bounding box encapsulating
both the bicycle and pedestrian (red). The blue boxes represent ground truth
annotation.

where:
- hseg is the estimated real-world height in meters,
- hpix is the pixel height of the segmentation mask,
- davg is the average depth of the object,
- fy is the vertical focal length of the camera.
Subsequently, the computed height was passed into the 3D

bounding box generation module and used to directly define
the vertical size of the box. Finally, the entire bounding box
was vertically shifted so that its base aligns with the lowest
LiDAR point within the object. Significant improvements in
vertical accuracy and consistency were observed, particularly
for cars, as can be seen in Figure 2 and motorcycles.

2) Handling Cyclists and Overlapping Classes: The pre-
trained YOLO segmentation model does not include a dedi-
cated cyclist class and detects the rider as a pedestrian and
the bicycle as a bicycle instead.
A merging strategy based on the detection of overlapping
bounding boxes was implemented. Pairs of pedestrian-bicycle
boxes that overlapped in the bird’s-eye view (BEV) were
considered as cyclist and merged by fully enclosing both
boxes.
This strategy significantly improved the consistency of 3D
box generation for cycling-related objects, as illustrated in
Figure 3.



3) Background Filtering for Bicycles: The LiDAR points
often pass through gaps in the frame of the bicycle and
the wheels, capturing background objects such as walls. This
caused the bounding boxes to include unnecessary background
points, leading to incorrect depth of the predicted bounding
boxed.

To address this, a percentile-based background filtering
mechanism inspired by the interquartile range (IQR) method
was applied. The points were filtered using the X-axis values
of the 3D LiDAR points. Unlike the standard IQR method, we
adopted a modified approach in which the lower bound was set
at the 0th percentile and the upper bound at the 60th percentile.
This ensured that all nearby points were retained, while points
significantly further from the object, typically associated with
background surfaces, were excluded.
To determine the filtering bounds, percentile spread multiplier
of 0.8 was employed, analogous to how margins are computed
in interquartile-based filtering. LiDAR points with X values
that fell outside this extended range were classified as back-
ground noise and excluded. The multiplier of 0.8 was selected
based on empirical evaluation, striking a balance between
removing distant irrelevant points and preserving the essential
ones.

4) Center and Rotation Optimization: Several enhance-
ments were introduced to improve the determination of the
center and orientation of the bounding boxes, especially for
elongated objects such as trucks. Initially, in the baseline
method the center of the bounding box was calculated based on
the geometric centroid of the LiDAR points of the object. The
baseline bounding box generation function aims to minimize
the volume of the enclosing box, which occasionally results
in orientations that are misaligned. The goal was to produce
bounding boxes that more accurately reflect the object’s shape
and heading in the ground plane. The following procedure was
used:

• Convex Hull Calculation: The 3D LiDAR points of each
detected object were projected onto the ground plane (X-
Y axes), and a convex hull was computed to approximate
the object’s footprint from a top-down view.

• Furthest Points Identification and Center Estimation:
From the convex hull, the two most distant points were
identified. The midpoint between these points was used
as the center of the bounding box. This heuristic better
represents the spatial extent of elongated objects than the
geometric centroid, which may be biased by uneven point
distributions.

• Rotation Optimization: To align the bounding box with
the object’s principal axis, we searched for the optimal
yaw angle θ around the previously computed center.
The cost function L(θ) (Equation 2) was defined as
the average distance between all filtered LiDAR points
P = {p1, . . . ,pN} ⊂ R2 and their nearest edge on the
bounding box base B rotated by the angle θ. To evaluate
this efficiently, a fully vectorized implementation was

used to compute point-to-edge distances.

L(θ) = 1

N

N∑
i=1

dist (pi,B(θ)) (2)

• Optimization Procedure: The optimal rotation angle
was determined by local minimization of the scalar func-
tion of a variable, which performs continuous optimiza-
tion of the yaw angle. This approach improved alignment
accuracy for long objects and reduced computational
overhead compared to brute-force search over discrete
angles.

This strategy significantly improved the alignment of bound-
ing boxes for trucks and other long vehicles, as illustrated in
Figure 4. By accurately aligning the bounding box with the
true orientation of the object, the model was able to produce
more realistic and stable bounding box estimates.

Figure 4. Demonstration of bounding boxes rotation refinement in birds-eye-
view: the blue boxes show the original rotation, while the red boxes show the
boxes after correction based on the distance to LiDAR points (green).

III. EVALUATION

A. Dataset
For the purposes of evaluation, the View of Delft (VoD)

[14] dataset was used. This dataset was captured in an urban
environment and provides multimodal sensory data: high-
resolution images, detailed lidar point clouds, and 4D radar
measurements. The combination of these sensors makes the
dataset suitable for experimenting with various sensor fusions
and 3D object detection as a whole. The data was collected
in various locations across the city of Delft in Netherlands,
covering a wide range of scenarios such as residential areas,
intersections, open spaces as well as narrow and dense streets.
It contains 8600 annotated frames at 10 Hz with more than 120
000 annotations in camera FoV. Of the 13 classes provided in
the dataset annotations, only cars, pedestrians, cyclists, trucks,
and motorcycles were used for evaluation of described post-
processing methods. The quantity of annotated bounding boxes
present in the dataset can be seen in Table I

TABLE I. Number of annotated bounding boxes per object class in the dataset

Car Cyclist Pedestrian Motorcycle Truck
Count 19,899 25,443 19,892 571 219

B. YOLO model
The pre-trained version of the YOLOv8 segmentation model

was used. The model weights provided by Ultralytics [15] re-
sult from training on the Common Objects in Contex (COCO-
Seg) dataset. [16]. The small size of the model consists of



11.8M parameters and achieves mean average precision (mAP)
of 37.8% across 80 present classes.

C. Results

The impact of the proposed post-processing methods was
evaluated by comparing detection performance before and
after their application. Table II presents the absolute im-
provements in detection accuracy across five object categories
(car, cyclist, pedestrian, motorcycle, truck). Evaluation metrics
include mean Average Precision (mAP) at intersection over
union (IoU) thresholds of 0.5 and 0.25, and mean IoU between
predicted and ground truth 3D bounding boxes.

TABLE II. Absolute improvement between the baseline implementation
described in Section II-A and the pipeline enriched with post-processing
techniques. Values shown are in percentage points (% pts.).

Metric Car Cyclist Pedestrian Motorcycle Truck
(% pts.) (% pts.) (% pts.) (% pts.) (% pts.)

AP@0.5 8.06 2.10 8.19 5.78 9.59
AP@0.25 7.91 8.28 4.87 11.04 15.53
Avg IoU 5.57 2.85 3.34 4.86 6.39

The results demonstrate that post-processing techniques can
substantially enhance the accuracy and consistency of 3D ob-
ject detection when applied after an initial neural segmentation
and point cloud fusion stage. Among all evaluated object
classes, truck and motorcycle detections benefited the most
from the applied enhancements.

IV. CONCLUSION

This work demonstrated how a set of lightweight, math-
ematically and geometrically driven post-processing methods
can improve the performance of a YOLO-LiDAR 3D object
detection pipeline without additional neural computation. The
evaluation of the View of Delft dataset showed consistent
performance improvements in key detection metrics, especially
for object classes trucks and cyclists. The results validate the
importance of geometry-aware post-processing as a comple-
ment to deep segmentation models, particularly in scenarios
where inference must remain computationally undemanding.
Future work could focus on the correction of bounding box
width, particularly in scenarios where the point cloud is
incomplete due to occlusion. In such cases, the 3D LiDAR
data often fail to capture dimensions of the object sufficiently,
resulting in overly narrow or collapsed bounding boxes. This
issue is especially common for cars and trucks when viewed
from side angles or when partially obstructed. To address
this, class-specific heuristics based on known dimensions or
typical aspect ratios could be introduced as priors during post-
processing stage.
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