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Abstract: This article focuses on the geolocation possibilities in the context of the Internet 
of Things (IoT) and Low-Power Wide-Area Networks (LPWANs). A novel Logarithmic 
Distance Path Loss Model with a Memory (LDPL-M) algorithm to enhance the accuracy 
of determining the location of end devices based on trilateration using a Received Signal 
Strength Indicator (RSSI) is proposed. This technique proved to be more accurate by 
25.54% compared to the conventional Logarithmic Distance Path Loss Model (LDPL), 
while focusing on low power consumption. Overall, the article provides valuable insight 
into the geolocation of LoRa end devices and highlights the importance of accurate and 
efficient geolocation methods in IoT and LPWANs applications. 
 
Keywords: LoRa, LoRaWAN, geolocation, IoT, LPWAN, RSSI, trilateration 
 
1 Introduction 
 LoRa technology belongs to the field of LPWANs. It enables the connection of a large 
number of end devices that send small volumes of data over long distances several times a day 
with minimal energy consumption. The devices last 5 to 10 years on a single charge and can be 
placed even in hard-to-reach places without access to electricity. The properties of LPWANs 
definitely enable device geolocation while maintaining low power consumption [1- 4]. LoRa is 
a wireless technology promoted by the LoRa Alliance. It utilizes a proprietary Chirp Spread 
Spectrum (CSS) modulation, which means a regular change in signal frequency - increasing or 
decreasing over time. It operates on the physical layer of the OSI model [2, 5]. It uses the freely 
available Industrial Scientific and Medical Band (ISM) for data transmission, so observing the 
so-called duty cycle (DC) is necessary. DC limits the time a device can transmit. Generally, this 
is 1% of the time, which equals 36 seconds per hour [6, 7]. 
 Above the LoRa physical modulation operates the LoRaWAN protocol, ensuring bi-
directional communication. LoRaWAN is standardized by the LoRa Alliance organization and 
has the possibility of roaming, but with the cost of higher energy consumption compared to 
other protocols, e.g., LoRa@FIIT developed at FIIT STU [6, 8, 9, 10]. A typical implementation 
of a LoRaWAN network consists of end devices (typically a simple battery-powered sensor), 
gateways, a network server, and an application server. In most applications, end devices are 
autonomous, connected in a star1 topology, and send the collected data via LoRa technology to 
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all gateways within their range. After the gateway receives a message, it immediately adds 
metadata to it: timestamp, Received Signal Strength Indicator (RSSI), Signal to Noise ratio 
(SNR), and others, which are crucial in determining the location of the end device in wireless 
networks [8]. 
 Our research focuses on the LoRaWAN protocol and the LoRa technology in general, 
which belong to the category of LPWANs. The accuracy of determining the location of end 
devices in LoRa networks depends on types of devices and communication parameters, as well 
as the geolocation method used, i.e. triangulation, trilateration, and multilateration. In this 
article, we deal with the method of trilateration based on the Received Signal Strength Indicator 
(RSSI). In this work we focus on the opportunities for the geolocation of end devices, 
particularly in connection with Low-Power Wide-Area Network (LPWAN), a wireless wide-
area network with low energy consumption. Compared to standard methods of geolocation 
using global navigation systems (GNSS), LPWANs allow to determine the location of end 
devices over a relatively wide area with minimal power consumption. We proposed a novel 
logarithmic distance path loss model with memory (LDPL-M) algorithm, which takes into 
consideration not only the actual end device's location, but also previous locations. Results 
showed this modification improves the overall geolocation accuracy for non-stationary as well 
as stationary end devices. 
 The main contribution of this article lies in the following: 

• Research in the field of LPWANs and suitable geolocation methods: The paper 
describes LPWANs with the focus on the LoRa technology and provides an overview 
of the methods applicable for the purposes LoRa end devices geolocation with low 
power consumption in mind. 

• Proposal of the LDPL-M algorithm: A logarithmic distance path loss model with 
memory (LDPL-M) algorithm for the geolocation of end devices based on the 
trilateration using RSSI value is proposed. Compared to the existing solutions the 
algorithm computes the end device position using not only the actual location, but 
considers n previously determined locations, which improves the overall accuracy. The 
accuracy, or the error, respectively, of the proposed algorithm is also measured and 
compared to other methods, including GPS sensor data. 

 The article is organized as follows: Section 2 describes related work and provides basic 
information about LoRa technology and the LoRaWAN protocol. Additionally, this section 
describes the geolocation techniques applicable to these networks. Section 3 explains the 
methodology of building the private LoRaWAN network as well as data collection and 
processing in both the private and Slovanet provider networks. It also describes a method for 
estimating the initial position of the end device and proposes an LDPL-M algorithm to improve 
the accuracy of existing solutions depending on specific use cases. This section compares the 
accuracy of estimating the end device's location using different algorithms and describes the 
method of displaying this position on the map. Additionally, the impact on the end device's 
power consumption utilizing the GPS sensor was assessed. The gathered dataset is described in 
Section 4. Finally, Section 5 concludes the paper. 
  



2 Related Work 
 Determining the location of LoRa end devices is an active research area, with several 
proposed methods and algorithms to enhance the overall accuracy. Recent studies have 
demonstrated that machine learning algorithms and hybrid methods combining different 
techniques offer promising results [5]. Furthermore, the deployment of LoRa gateways and 
proper positioning can significantly influence geolocation accuracy, so further research is still 
required to optimize gateway placement in different environments. Several studies have 
examined the deployment and type of LoRa gateways and their influence on geolocation 
accuracy, including a study [11] that examined the impact on geolocation accuracy in an urban 
environment. 
 Although considerable research has been done on geolocation in LoRa networks, there 
is a need for more publicly available data on this topic in Bratislava, Slovakia. Our study aimed 
to examine the accuracy and feasibility of geolocation in a real-world environment and provide 
insights into the factors that could impact the precision of location estimation. 
 The three most common techniques used for the geolocation of devices in a wireless 
network are multilateration, trilateration, and triangulation, which require knowledge of the 
location of reference points (gateways). The choice of the appropriate technique depends on the 
use case and the available information about the end device [12]. 
 

 
Figure 1 Position calculation using trilateration [13] 

 
 The trilateration method uses the distance between the transmitting device and each 
reference point in its calculation, as shown in Figure 1. The distance between devices can be 
calculated in two ways:  

1. Based on the Time of Arrival (ToA), 
2. Based on RSSI value. 

For the correct calculation of the distance in the ToA method, it is essential to correctly 
determine the transmission time between devices. The proper determination of the transmission 
time requires time synchronization between the end device and all reference points in the 
network. Time synchronization on end devices requires additional communication and thus can 
increase power consumption. Trilateration using ToA for determining the end device’s location 
is therefore unsuitable for LPWANs [12, 14]. 
 The multilateration method does not require knowledge of the device's distance from 
each reference point as in the case of trilateration, but only the difference of distances from each 
reference point to the device. The time difference of arrival (TDoA) between the end device 



and the reference points is used to calculate the distance difference. Thus, this method requires 
time synchronization only between reference points [12]. Even a small error in the time 
synchronization (1 µs) of the reference points can cause a significant error in determining the 
position of the end device (300 m) [15]. 
 The triangulation method uses the geometry of a triangle defined by two angles of the 
signal angle of arrival (AoA) for calculation. However, AoA measurements are not suitable for 
determining the location of a device in a LoRa network due to the accumulating angle error 
with increasing distance of the device from the reference points [12]. 
 In LPWANs, the methods of multilateration (TDoA values can be determined) and 
trilateration (RSSI value available in LoRaWAN packet) can be used to calculate the position 
of the end device. Studies show better accuracy of TDoA over RSSI [12, 16]. However, as the 
gateway clocks in our network are synchronized using Network Time Protocol (NTP) servers, 
we only achieved precision at milliseconds, which is not sufficient for geolocation based on the 
TDoA. 
 
 

 

 

Figure 2 Representation of distance from (a) single reference point and (b) multiple reference 
points [13] 

 
 The trilateration method can be used to estimate end devices’ location using RSSI. To 
simplify the calculations, the intersection of circles is in the Cartesian plane. Referring to Figure 
2, we want to determine the device’s P location using a reference point L whose location is 
known. Based on one reference point, we cannot determine the location of the device P, but we 
can estimate the distance d between P and L using techniques based on RSSI, as shown in 
Figure 2a. Each point is a potential candidate for P at this distance. For the correct determination 
of P, we need at least three circles whose intersection is at single point. This point represents 
the actual location of the device, shown in Figure 2b. We create multiple circles using various 
reference points, each at a known location Li. For each reference point, we can determine the 
distance di from P [13]. The equation for a circle in a plane: 
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where the point (x, y) on the Cartesian plane lies on a circle of radius d centered on (cx, cy). 
From (1), we can derive the equations for the circles generated by the reference points. Each 
reference point has a known location expressed by latitude and longitude coordinates (ϕi, λi). 

a) b) 



We obtain the intersection of the circles by solving the system of three linear equations, thereby 
determining the location of the point P = (ϕ, λ) [13, 17]: 
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This method is mathematically correct, but we encountered several problems that make it 
impractical. In the real world, a set of equations may not have a solution, as the circles may not 
intersect at a single point due to measurement error. For example, in [18], the authors tried to 
create a prototype of a wireless network in a coal mine, which could be used to navigate miners 
out of the mine in case of an emergency. However, the geolocation proved to be unsuccessful 
due to the significant interference of the environment, which caused errors in the measurement 
of the distances of the end devices from the reference points. In the same way, we cannot use 
measurements from more than three reference points in the analytical approach. Therefore, we 
approach this problem more like an optimization problem and search for a point X = (ϕx, λx) 
that provides the best approximation to P. Using the Mean Squared Error (MSE) calculation, 
we can verify how well the point X replaces the point P [18]: 
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where: dist(X, Li) is a distance between point X and reference point Li. 
 
If this distance coincides with the corresponding distance di, it contributes minimal error to the 
total error, or none at all (we assume that X is indeed P). The use of squares eliminates the 
mutual subtraction of positive and negative errors. The optimization algorithm should be able 
to converge to a reasonable result. However, by providing an estimate of the initial position of 
X, we can speed up its execution. The advantage is the possibility to use any number of reference 
points [13]. 
 
3 Proposed Solution 
 This section describes a novel LDPL-M algorithm for determining the end devices’ 
location, including architecture, data collection and processing, initial position estimation, the 
LDPL-M algorithm itself, and results achieved so far for stationary and non-stationary devices. 
The requirements for the proposed technique and its evaluation were the following: 

1. The geolocation of end devices powered by a limited power source. Geolocation is 
based on the trilateration method utilizing the RSSI in a LoRaWAN network. 

2. Comparison of the accuracy of existing geolocation methods within the trilateration. To 
compare the accuracy of individual geolocation techniques, a graph of the Cumulative 
Distribution Function (CDF) and a table of error rates of particular methods are used in 
each percentile. At the same time, using different methods depending on specific use 
cases may require different levels of accuracy. 

3. Verification of the LDPL-M accuracy. An external GPS sensor is utilized to provide a 
reference value for the actual location of the end device, with an accuracy of 1.5 cm. 

4. Visualization of the end devices’ location on the map. As part of our work, a web 
interface that displays the last recorded location of the end device, along with 
information about the time of the most recent location update, was created. 



5. Contribution to future research and community. This work also tries to contribute to the 
field of LPWANs and geolocation, respectively, by creating a publicly available dataset 
for the future continuation of research. 

 In our work, we focus on geolocation of the end device exclusively by the trilateration 
method based on the RSSI, as we were limited by the hardware capabilities. The basic principle 
of determining the end device's location based on RSSI consists of associating the path loss 
with the distance between the transmitted and received signal. Path loss represents the loss of 
signal strength that occurs during transmission through a communication medium and 
obstacles, such as air or a wall, respectively. Path loss can be calculated using the link budget, 
which includes all signal gains and losses during transmission from the transmitter to the 
receiver. This budget is defined by (4) [19, 20]: 
 

𝑃4! = 𝑃5! + 𝐺4! + 𝐺5! − 𝐿60,     (4) 
 
where: PRx is a signal strength at the receiver, 
 PTx is a signal strength at the transmitter, 
 GRx is a gain of the antenna used by the receiver, 
 GTx is a gain of the antenna used by the transmitter, 
 LPL is a path loss. 
 
 Path loss is calculated by substituting the RSSI value into PRx in (4). We can 
subsequently associate the path loss with the distance the signal has traveled through several 
models: 
 

1. Free-space Path Loss Model (FSPL): The main idea is that the strength of a received 
wireless signal passing through free space decreases quadratically with increasing 
distance from the sender [21]: 
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where: PRx(d) is a signal strength at receiver at distance d, 
 l is a wavelength, 
 d is a distance between receiver and sender. 
 
 A more appropriate notation of such a model is in units of decibels (dB): 
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where: FSPL(d) is a path loss at distance d, 
 d  is a distance between receiver and sender, 
 f  is a carrier frequency, 
 c  is a speed of light. 
 

2. Logarithmic Distance Path Loss Model (LDPL): In reality, the vast majority of 
signals are received in an environment without direct visibility of devices (Non-Line 
of Sight, NLoS), which results in interference, especially in built-up areas. 
Interference is caused by reflections from buildings, weather, and other variables, 



considering utilization of FSPL more an idealization. Based on empirical evidence, 
it is more appropriate to estimate the distance according to the LDPL formula [14, 
20]: 

𝐿60(𝑑) 	= 	 𝐿60(𝑑9) 	+ 	10b	𝑙𝑜𝑔(
(
()
) + 𝑋s ,    (7) 

 
where: LPL(d) is a path loss at distance d in dB, 
 LPL(d0) is a path loss at reference distance d0 in dB, 
 b is a path loss exponent - an empirical constant dependent on the environment, 
 Xs is a path loss random variable from the shading factor with zero Gaussian mean 
  value and standard deviation s in dB. 
 
 By substituting LPL from (4) into (7), the distance d can be estimated if we have the 
values of the parameters β and LPL(d0). These values can be obtained by performing empirical 
measurements - machine learning methods by fitting a logarithmic curve are used to describe 
best the data obtained by the measurements. The values of the parameters β and LPL(d0) are 
dependent on the environment [22]. 
 In addition to the mentioned models, there are other models such as Okumura-Hata, 
Cost 231, or IMT-2000 [20]. 
 To improve the results of device geolocation using methods based on RSSI, Estimated 
Signal Power (ESP) is used, which represents the RSSI value with environmental interference 
considered. ESP is beneficial due to the characteristics of LoRa networks, in which devices can 
receive a relatively noisy signal (in practice, the gateway manages to decode even frames with 
an RSSI of approximately −120 dBm) [23]. We can write the ESP equation in the logarithmic 
form [20, 24]: 
 

𝐸𝑆𝑃((;<) = 𝑅𝑆𝑆𝐼(;< + 𝑆𝑁𝑅((;) − 10𝑙𝑜𝑔$9(1 + 109.$	?@4(+,)).  (8) 
 
 We can continue to work with ESP in the same way as with RSSI, and therefore 
substitute it into PRx in (4) and then calculate the distance between the end device and the 
gateway using (7). For most of the previous works, which determined the position of the RSSI 
device, determining the position in a smaller area or sparsely built-up areas with minimal 
environmental interference was specific. Any environmental obstacle seriously affects the 
geolocation accuracy [20]. We therefore conclude that such device geolocation is more suitable 
for a smaller area and in an environment with direct visibility of devices (Direct Line of Sight, 
DLoS). 
 
3.1 Architecture 
 In this section, the primary focus is on the architecture of the private LoRaWAN 
network. Unfortunately, we cannot access the architecture of the public provider network, so it 
cannot be discussed in more detail. Figure 3 shows the gateway locations within the private 
network. All gateways were strategically placed to form a polygon and maintain DLoS with the 
end device. The highlighted polygon illustrates the area in which the end device was able to 
move during the data collection. The network comprised the following components: 

• End device: Development Kit LilyGo TTGO ESP32 with SX1276 LoRa Chip and built-
in NEO-6M GPS module. The device was programmed to periodically transmit uplink 
(from the end device to the network server) messages at 868 MHz frequency band. The 
LMIC-node library [25] was used. 



• Network server: Messages sent from end devices received by gateways were sent over 
the Internet to the ChirpStack network server. This open-source LoRaWAN network 
server provided a web interface to manage gateways, end devices, and applications [26]. 
Using the ChirpStack network server, we downloaded all measured data in JavaScript 
Object Notation (JSON) format, which was then processed to determine the geolocation 
of end devices. 

• Gateways: During the data collection phase, we utilized 8 Raspberry Pi microcomputers 
as gateways within the network. These microcomputers were attached a compatible 
backplane connecting the Raspberry Pi to an iC880A LoRaWAN concentrator with an 
868 MHz antenna. Each Raspberry Pi gateway was running the Raspberry Pi OS 
operating system. One of the key advantages of using Raspberry Pi gateways was their 
mobility, as power banks could power them. This enabled us to position the gateways 
in any location necessary to optimize the data collection process. 

 
Figure 3 Gateways position - Google Maps data 

 
 A microservice architecture shown in Figure 4 was utilized during the data collection 
and experiments. It consists of the following services: 

• Hypertext Transfer Protocol (HTTP) Server: A minimalist HTTP server based on the 
Python. The ChirpStack network server allows captured uplink messages from the end 
device to be sent in real time to any Internet Protocol (IP) address using the HTTP 
protocol. The task of the HTTP server is to capture messages from the ChirpStack 
network server and then forward them via the HTTP protocol to a Geolocation Solver 
service. 

• Message Queuing Telemetry Transport (MQTT) Client: A simple MQTT subscriber. 
The public provider sends real-time uplink messages from the end device to this topic. 
When implementing the subscriber, we suggest using the paho.mqtt Python module. 



The task of this service is similar to the previous case, i.e., to forward uplink messages 
to Geolocation Solver. 

• Geolocation Solver: This service estimates the end devices' position in both networks 
separately. It uses an LDPL-M algorithm further described in the following sections. 
This service is implemented using a Python http module. After calculating the end 
device's position, the coordinates are sent to the NestJS web server via HTTP. 

• NestJS Web server: A simple web server storing information about the end devices' 
location in the database (for each device in both networks separately). This service also 
contains the ”Where is my node ?” user interface described in section 4.8 in more detail. 

 
Figure 4 Software architecture 

 
3.2 Initial position estimation 
 Algorithms that determine the location of the end device typically need an initial 
estimate of the starting position. This accuracy can be slightly lower, as the algorithms should 
eventually converge to a more accurate results. We used the Weighted Centroid (WC) of the 
gateways that received the signal from the end device for the initial estimate. The path loss for 
the given gateway determined the weight. The inspiration for this idea came from a solution 
proposed by Bissett [20] - weight was linked to the ToA. We assumed that a lower path loss 
value indicates a gateway closer to the end device and vice versa. Based on this assumption, we 
calculated the weight for each gateway as follows: 
 

𝑤* =
0./#)0./!
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 ,      (9) 

 
where: wi is a weight of ith gateway's influence on the gravity center calculation, 



 𝐿60! is a path loss of the ith gateway of the given transmission, 
 𝐿60# is the largest path loss of the given transmission, 
 c is a constant adding minimum weight for each gateway, 
 n is a number of gateways that received the uplink message. 
 
 The resulting formula for calculating the estimated initial value is as follows: 
 

A!A#AB = ∑ 𝑤D* A!!#!B
3
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where: A!A#AB is a weighted centroid of gateways' gravity, i.e. estimated starting position of 
  end device. 
 
 In addition to estimating the initial position, we used a weighted centroid as one of the 
techniques to determine the actual position. 
 
3.3 Map projection 
 Coordinates define the location on the ground. There are two coordinate systems: the 
Geographic Coordinate System (GCS) and the Projected Coordinate System (PCS). GCS 
defines the position in angles based on latitude and longitude from the center of the Earth [27]. 
PCS, or Cartesian Coordinate Systems (CCS), represents the three-dimensional GCS in two 
dimensions by projecting and leveling the Earth’s surface onto a plane. During projection, 
distortions occur (shape, area, distance, or direction). No kind of projection preserves all four 
geographic features at the same time. Each projection tries to preserve some geographical 
feature but with the knowledge of compromising other features. For this reason, many different 
projections are divided into three main projection systems: cylindrical, conical, and planar. We 
will focus on the cylindrical projection, as with this type of projection, the lines of latitude and 
longitude remain parallel to the x and y axes [20, 27]. 
 Figure 5a shows the Mercator projection, one of the most popular and used cylindrical 
projections. It is used in most map applications such as Google Maps or OpenStreetMap. 
However, this type of projection distorts areas further from the equator. Another projection type 
is more suitable for our needs, i.e., the Equidistant projection shown in Figure 5b. It maintains 
constant distances along both lines of latitude and longitude. In Equidistant projection, we can 
directly assign the displayed pixel on the map to the corresponding geographic location on 
Earth. 
 By a simple calculation, we can convert the GCS to the PCS, i.e., convert the latitude 
and longitude (λ, ϕ) to coordinates (x, y) in the Cartesian plane [20, 27, 28]: 
 

𝑥 = 𝑅(l− l9) cos𝜙$,     (11) 
𝑦 = 𝑅(𝜙 − 𝜙$),       

 
where: x is a horizontal coordinate on projected map, 
 y is a vertical coordinate on projected map, 
 R is an Earth radius in meters, 
 𝜆 is a projected longitude, 
 l9 is a central map parallel, 
 𝜙 is a projected latitude, 
 𝜙$ is a standard parallel. 



 

 

Figure 5 Cylindrical (a) Mercator and (b) Equidistant projections [28] 
 
3.4 Accuracy evaluation 
 The distance between two points must be calculated to evaluate the accuracy or error of 
the location determined by the techniques described in this article. On a small scale, it can be 
assumed that the observed surface is flat without the curvature of the Earth. The distance D 
between the point P = (λ1, ϕ1) and Q = (λ2, ϕ2), can be thus calculated using the simple Euclidean 
distance [29]: 

𝐷 = 𝑅KDf" + (cos f<Dl)
",     (12) 

 
where: R is the radius of the Earth, 
 Df Lf" − f$L, 
 Dl |l" − l$|, 
 f< f%Cf"

"
. 

 
 Euclidean distance only approximates the distance between two geographic points if 
they are relatively close to each other. Since the Earth is not flat, we must calculate the so-called 
great-circle distance. We can imagine this distance as the length of the shortest rope laid on the 
Earth surface, which connects two points, as shown in Figure 6 [29]: 
 

𝐷 = 𝑅 tan)$(
D(EFG f" GHIDl)"C(EFG f% GHI f")GHI f% EFG f" EFGDl)"

GHI f% GHI f"CEFG f" EFG f" EFGDl
).   (13) 

 
 Using this technique, we assume that the Earth is a perfect sphere. However, the Earth 
is an irregular ellipsoid. When calculating the distance between two points, the error is never 
more significant than 0.5% [30]. Using (13), it is possible to calculate the distance between two 
points and thus verify the error rate of the geolocation methods. 

a) b) 



 
Figure 6 Great-circle distance [29] 

 
3.5 Methodology of data collection and processing 
 Slovanet provided us an end device from the manufacturer Ursalink, which periodically 
communicated with gateways connected to the public provider LoRaWAN network. In the 
private LoRaWAN network, we used the end device described in Section 3.1. The process of 
data collection was similar in both networks. To accurately record the real-time position of the 
end device, we utilized an external ublox GPS sensor with a precision of 1.5 cm. This sensor 
was placed next to end devices during measurements, and the position was recorded twice per 
second. The GPS sensor was also utilized to position the gateways. It is worth noting that the 
coordinates of the end device were processed not at the time of transmission but at the time of 
reception at the network server. The processing of measured data consisted of several steps: 

1. Assignment of the recorded position by external GPS sensor to uplink messages based 
on timestamps. 

2. Transformation of latitude and longitude into x and y coordinates using local cylindrical 
equidistant projection. 

3. Determination of parameter values (LPL(d0) and β) for individual gateways. 
4. Evaluation of the accuracy of geolocation. 

 The data collected from both networks are visualized in Figure 7a and Figure 7b. 
 
 The first step was to assign the location of the end device to uplink messages based on 
the timestamps. Since the external GPS sensor recorded its position twice per second, it often 
happened that the time of uplink message reception at the network server was not precisely the 
same as that of the external GPS sensor. In such a case, the location was selected at the time 
closest to the message reception time. The difference never exceeded 500 ms. 
 The second step consisted of transforming latitude and longitude coordinates into x and 
y coordinates using a local cylindrical equidistant projection. To transform the coordinates 
while preserving the actual scale, it was first necessary to determine ϕ1 and λ0. To verify the 
correctness of the so-called true scale equidistant cylindrical projection, we compared the 
distance between the two most distant points in the dataset using the Euclidean distance in the 
Cartesian two-dimensional plane and the great-circle distance. The maximum possible distance 
error between two points using the Euclidean distance versus the great-circle distance was 
0.000019 mm (0.0000000084 %) at a length of 228.77 m. 



 

Figure 7 Visualization of measured data in (a) public provider and (b) private network using 
equidistant cylindrical projection 

 
The margin of error is small enough that we can continue to work with the x and y coordinates 
in the Cartesian plane and use the Euclidean distance. 
 The next step was determining the values of the parameters (LPL(d0) and β) for 
individual gateways laying the logarithmic curve so that it best describes the relationship 
between distance and path loss. We can observe the theoretical FSPL model, compared to the 
LDPL model, is highly underestimated and unsuitable for determining the location of the end 
device. Based on the results, we conclude that even a tiny obstacle between the gateway and 
the end device results in large fluctuations in the path loss, thus significantly affecting the 
geolocation accuracy. After obtaining the gateway parameters, we calculated the distance of the 
end device from the gateway using the path loss. 
 The penultimate step was to perform filtering of uplink messages unsuitable for 
determining the location of the end device. After filtering out these messages, 132 of the 
original 233 messages could be used to determine the location of the end device. 
 The last step was to evaluate the accuracy of geolocation techniques. 
 
3.6 LDPL-M Model 
 To determine the location of the end device, we propose to use the trilateration method, 
i.e. to associate the distance of the device from individual gateways based on the value of signal 
loss during propagation. The reason for using this method is the insufficient time 
synchronization between the gateways caused by hardware limitations. This fact does not allow 
us to determine the position of the device using the multilateration method. 
 The collected dataset has a characteristic feature - since the end device sends uplink 
messages regularly in a certain period, we can use this fact and potentially improve the overall 
geolocation accuracy by incorporating the previous locations into the calculation. The condition 
for this approach is to have the real location of the end device at the time of sending the first 
message. We can obtain this data either by one of the methods for determining the location or 
by using the real location using GPS. In addition to the location of the device at the time of 
sending the first message, it is necessary to determine a value that represents how far the device 
will most likely move until the next message reception. We can determine the distance that the 
device can potentially travel in two ways:  

1. Calculate all distances between individual transmissions of uplink messages based 
on empirical measurements and then determine the largest distance that the device 

a) b) 



has traveled in 90% of cases. Depending on the use case, this percentage can be 
adjusted as needed. 

2. Determine how fast the device most often moves and thus associate the distance 
traveled with the device's speed and the periodicity of the uplink message 
transmission.  

 After defining the distance that the device will most likely travel between individual 
transmissions, we propose to use the previous location of the device as the location of an 
additional virtual gateway in the next transmission. The location of this virtual gateway will 
represent the center of a circle with a radius equal to the defined distance that the device will 
most likely travel. By adding the virtual gateway, we can potentially improve the geolocation 
of the end device using the trilateration method, since we virtually increase the number of 
gateways that have captured the message. The limitation of this method lies in the assumption 
that the device moves constantly, or its speed is part of movement data, i.e. known in advance 
or are a part of the data payload, respectively. 

 
Figure 8 User interface 

 
 In the case of a static device, the algorithm would worsen the measured results, since it 
assumes the device is in motion. Furthermore, this algorithm is not suitable for use cases where 
the speed of the end device slows down or speeds up significantly. We thus in this article 
propose a novel LDPL-M algorithm and experimentally verify the accuracy of the geolocation 
on real data and compare the accuracy with the common trilateration methods described in 
previous sections. 
 In the previous geolocation techniques, we assumed that the end device was in motion. 
However, in real-world scenarios, we often encounter situations where end devices are 
stationary. In the context of computing the end devices' location within the LoRaWAN network, 
we were able to leverage this observation to enhance the accuracy of our model. To do this, we 
gathered a set of messages from the private LoRaWAN network, all gathered close to each other 
(within a 2-meter range). By doing this, we effectively created a scenario mimicking a 
stationary device. In determining the stationary end device’s location, we incorporated the 



current estimation and the results of past calculations. This was achieved by averaging the 
current estimated location with the results obtained from prior computations. To ensure stability 
and mitigate significant variations in the RSSI due to environmental factors, we limited the 
averaging process to the last N previously estimated end device's locations. This approach 
averages the location estimate to smooth abrupt RSSI value changes, potentially refining the 
geolocation accuracy for stationary end devices. It is important to note that two different 
methods of averaging location exist: 

1. The first way is to figure out the current location and then find the average of the 
locations determined before. 

2. The second way is to figure out the current location and then find the average of 
earlier locations that had already been threatened the same way (averaged).  

The second method provided better results for our use cases. 
 
3.7 "Where is my node ?" 
 The web application visualizing the location of the end device is called ”Where is my 
node ?”. It is fully containerized using the Docker platform. A location update occurs every 
time an uplink message is received from the end device. The user interface is shown in Figure 
8. It displays the timestamp of the last location update. The page overviews the geolocation 
from both the public provider and private LoRaWAN networks. 
 
4 Dataset 
 During the measurements, a dataset from the private and the Slovanet public provider 
network was created. We used the ublox external GPS sensor to gather the precise location data, 
shown in Figure 9c, as a reference. The format of messages received in the public provider 
network slightly differs from those captured in a private network. Therefore, it was necessary 
to reflect this fact during implementation of the custom parser, which combines geographical 
data from an external GPS sensor and uplink message based on the timestamps. The dataset is 
publicly available for the community at the link https://data.ail.sk/dataset-geolora/. 
 In private network we utilized a LilyGo TTGO ESP32 end device equipped with an 
SX1276 LoRa chip and built-in NEO-6M GPS module. The end device is shown in Figure 9a. 
The external GPS sensor near the end device serves as a ground truth for the proposed solution 
verification. When the end device sent an uplink message, it was processed by the ChirpStack 
network server, which supports the integration functionality and enables uplink messages to be 
forwarded in JSON format to external HTTP server and further processed. The server then 
extracted the message reception timestamp from the message and appended a new line to the 
Comma-Separated Values (CSV) file. The output file was then combined with the GPS sensor 
data using a custom parser. Finally, the static information about the location of individual 
gateways was added. 
 In public provider network, we utilized end device from the manufacturer Ursalink, 
shown in Fig. 9b. Access to the data was possible when receiving the message or by obtaining 
historical data stored in the cache. The cache stores messages for 30 days and can be 
downloaded via the Representational State Transfer Application Programming Interface (REST 
API) in JSON format at most once a day. On the other hand, the MQTT protocol allows the 
subscription to the topic of interest and thus provides access during packet reception. We 
collected data using the MQTT client. The uplink messages were being sent with 5-minute 
periodicity. This attribute was set by the provider and could not be further modified. 
 The only difference worth noting, compared to private network, was encountered when 
filtering messages unsuitable for geolocation. The location of the gateways in the public 
provider network was contained within packet data, as we did not have access to the physical 



 

 

 

 

 
 

 

Figure 9 Hardware used during experimental setup - (a) LilyGo TTGO end device, (b) 
Ursalink end device, (c) ublox GPS sensor and (d) Power profiler kit II connected to the end 

device 
 
topology. However, not every gateway had information regarding its location available. 
Therefore, it was necessary to remove such gateways from the uplink data and then evaluate 
whether the appropriate message was received by at least three gateways whose location was 
known to be able to apply the trilateration-based mechanism. 
 
5 Results and discussion 
 When determining the location of end devices, we compared techniques discussed in 
this article - FSPL, LDPL, WC, and our proposed, LDPL-M. The precision of individual 
techniques was also compared to the GPS sensor data. In all cases working with path loss, we 
substituted RSSI with ESP. 
 The results of the error rate in the private LoRaWAN network with DLoS can be seen 
in Figure 10 showing a plot of the CDF, detailed in Table 1. These results clearly show that the 
most accurate way to determine the location of the end device is to use a GPS sensor, which is 
located directly on the top of the device itself but at the expense of increased power 
consumption. A similar average error is observed for all discussed techniques. However, the 
difference in accuracy between the LDPL model with and without memory is more significant. 
Our proposed LDPL-M method improves the geolocation accuracy over the conventional 
LDPL model by 24.54 % in 90 % of cases. WC results in a similar accuracy, but this method is 
only applicable for determining the location within the polygon formed by the gateways. The 
disadvantage is that the nature of the device must be known in advance, i.e., the speed at which 
the device moves. This limits the possibilities of using the technique. However, the end device  

a) 

c) 

b) 

d) 



 
Figure 10 Accuracy comparison in private network 

 
can also send the measured or estimated speed inside the LoRaWAN packet payload. 
 The detailed error results for the public provider LoRaWAN network without DLoS can 
be seen in Figure 11 and Table 2. During this test, we walked around Bratislava with the device 
attached rather than staying in the reserved area defined by spread gateways. The results show 
that the absence of DLoS and densely built regions significantly impacted the geolocation 
accuracy. Relying solely on RSSI values for estimating location in LoRaWAN networks 
without DLoS is unreliable. While our proposed model has improved the overall 
 
Table 1 Error rate comparison in private network (DLoS) 

Method 90 percentile error  
(m) 

50 percentile error  
(m) 

GPS Sensor 3.11 1.78 
LDPL-M 24.33 12.76 

WC 25.80 12.43 
LDPL 31.01 13.83 

 
accuracy of determining the location of the end device, the error rate is still high for most use 
cases. 
 Substituting the RSSI with ESP had a significant impact on the geolocation accuracy in 
the public provider network. In 90% of cases, the error rate using the RSSI value to calculate 
the path loss in the LDPL model was less than or equal to 2478.31 m, while using the ESP value 
it was 2197.53 m. We therefore observe a significant improvement in determining the location 
(11.35%). The impact of using the ESP decreases if the device is located closer to the gateway 



or with DLoS, because ESP partially considers the influence of the environment on the final 
RSSI. 

 
Figure 11 Accuracy comparison in public provider network 

 
 In the case of an environment with DLoS, the ESP differs minimally from RSSI, which 
we could observe in the data collected in private network. However, it is still advisable to use 
the ESP value instead of RSSI. 
 
Table 2 Error rate comparison in public provider network (no DLoS) 

Method 90 percentile error  
(m) 

50 percentile error  
(m) 

LDPL-M 1974.99 1006.42 
WC 2034.64 919.51 

LDPL 2197.53 1035 
 
 Regarding the modification proposed for static end devices, Table 3 and Table 4 contain 
the comparison of error rate between the original and modified geolocation techniques for the 
static end device. The graphs of CDF curves for individual measurements are present in Figure 
12a and Figure 12b. 



  
Figure 12 Accuracy comparison of (a) original and (b) modified methods for static node 

 
 The outcomes indicate that the modified methods enhance geolocation accuracy. We 
incorporated the results of the previous N = 10 calculated locations when averaging.  
 
Table 3 Error rate for static node using original methods in private network 

Method 90 percentile error 
(m) 

50 percentile error 
(m) 

LDPL-M 27.20 12.29 
WC 21.31 8.79 

LDPL 30.59 15.31 
 
The precision of our proposed LDPL-M algorithm increased from the initial 27.20 m to 7.56 m 
in 90 % of cases. Thus, it is evident that determining the location of a stationary end device is 
significantly more accurate than determining the position of a moving device. 
 
Table 4 Error rate for static node using original methods in private network 

Method 90 percentile error 
(m) 

50 percentile error 
(m) 

LDPL-M 7.56 5.62 
WC 9.92 6.40 

LDPL 7.87 6.01 
 
 Our study also compared energy consumption between scenarios with and without an 
active GPS module during message transmission and reception. To measure power 
consumption, we utilized the Power Profiler Kit II from Nordic Semiconductor [30], connected 
in sequence with the end device’s battery pins, as shown in Fig. 9d. Bundled software recorded 
fluctuations in current over time. 
 
Table 5 GPS module power consumption measurements 

GPS module Average 
(mA) 

Transmission 
(mA) 

RX window 
opened  
(mA) 

Off 86 140 102 
On 128 165 141 

 

a) b) 



 The results are detailed in Table 5. The measurements showed that the end device power 
consumption significantly increased (by an average of 48.8 %) when the GPS module was 
active. This finding underscores that utilizing the GPS module for determining end device's 
location yields notably enhanced accuracy compared to the trilateration technique used in the 
LoRaWAN network. However, this advantage comes at the expense of a significantly higher 
power consumption. 
 
6 Conclusion 
 Geolocation of the end device in LPWANs while maintaining low power consumption 
over a relatively large area is an exciting area that opens up many use cases. Choosing the 
proper technique to determine the location in the LoRaWAN network requires a thorough 
evaluation of advantages and disadvantages, especially in terms of overall efficiency.  
 In our article, we focused on comparing existing techniques using the private 
LoRaWAN network as well as the public provider LoRaWAN network provided by Slovanet. 
Next, we described the process of collecting and processing data. We proposed a novel LDPL-
M algorithm to enhance the geolocation accuracy concerning low power consumption. 
Compared to existing techniques, the LDPL-M also considers the end device’s previous 
locations. To assess the accuracy, we determined the location of the end device using an external 
GPS sensor and matched collected uplink messages with GPS sensor data. Part of our work was 
dedicated to estimating the end device’s starting position as an input to discussed geolocation 
methods. We observed a significant environmental influence on the RSSI value. Our 
measurements confirmed that the geolocation of end devices in the LoRa network by the 
trilateration is possible; however, it is not suitable for densely built-up areas and without DLoS. 
During experiments, the LDPL-M achieved better results than commonly used techniques. We 
assessed the impact of the GPS module on the end device's power consumption. Results 
revealed a notable increase with GPS enabled (average rise of 48.8%). This result indicates that 
using a GPS module is significantly more accurate than the trilateration technique in LPWANs, 
but at the cost of higher power consumption. At the same time, we observed a significantly 
lower error rate for determining the location of a static end device compared to a device in 
motion. Finally, we implemented a web application that displays the location of the end device 
in real time in both the private and public provider networks. 
 To our knowledge, we have yet to find any similar dataset that pairs geographic data 
with uplink reports from Bratislava, Slovakia. Our study provides measured data to the 
community for future research. Our measurements confirm that the environment significantly 
affects the RSSI. As a part of our research, we proved that the proposed LDPL-M algorithm 
achieves better results than commonly used techniques under specific conditions. 
 The subject of future work could be developing the geolocation method based on the 
multilateration using the TDoA principle. This method requires modifying the gateway 
hardware, which must be equipped with a GPS module to ensure a high degree of time 
synchronization between individual gateways. It would be necessary to collect data further and 
compare the accuracy of the TDoA method with the trilateration method based on the RSSI 
used in this work. 
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