2025 International Symposium ELMAR | 979-8-3315-9679-8/25/$31.00 ©2025 IEEE | DOI: 10.1109/ELMAR66948.2025.11194014

Monitoring for Open5GS in Secure and
Low-Footprint 5G Deployments

Janeba Matej, Oleksii Biletskyi, Galinski Marek, Kotuliak Ivan

Slovak University of Technology in Bratislava
Ilkovicova 2, Bratislava, Slovak Republic

matej.janeba @ stuba.sk

Abstract—This work presents low-latency-focused monitoring
for secure 5G control-plane mobile networks. We emphasize en-
crypted internal communication and minimal performance over-
head along with effective OS-specific deployment, including po-
tential ARM support. The solution is built over Open5GS Packet
Core implementation project to match the best performance
and smooth deployment over different hardware. The proposed
system extracts data from the protocol level by modifying the
Open5GS source code. The system uses asynchronous reporting
using the UDP.The core processing unit for the incoming logs is
solved by the ELK stack (ElasticSearch, Logstash, and Kibana) as
a robust solution with wide options of performance configuration
depending on the system’s needs. The alert mechanisms are
managed by logstash custom filters and the ElastAlert2 project.
A custom light-weight alert dispatcher server is introduced to
gather and forward the alerts to the end-user. For demonstration
purposes, the Discord Webhook API was chosen. Although not
covering the entire spectrum of complex alert scenarios, these
tools provide us with enough capabilities to demonstrate the
fundamental approach of the project.

Keywords—5G; Open5GS; Monitoring; Private Cellular Net-
work; Packet Core

I. INTRODUCTION

Fifth-generation (5G) mobile networks have already
changed the way we perceive wireless communication both
in civil commercial and critical private sectors. More scalable
control-plane design enables developers to implement complex
policies of effective management, effectively lowering the
latency and extending throughput for critical data. However,
complexity comes at the cost of extended attack surfaces.
Although substantial effort was made to mitigate the exposed
potential vulnerable APIs, critical infrastructure requires en-
hanced security features such as alert-driven monitoring.

Regular deployments tend to prioritize pure performance
over enhanced security. However, this project targets another
niche of 5G networks, namely private deployments for cam-
puses, governments, or possible military applications. The
main requirement for secured internal communication is the
configuration of TLS encrypted communication and IPSec
protected interfaces for certain scenarios where the encryption
of the application layer is not covered by the 3GPP standard
(N1, N2, N3, N4) [1]. These measures prevent visibility of the
data for monitoring. The encrypted traffic can only be accessed
at the application layer upon reaching the Packet Core.

The widely used Open5GS project is chosen as the best-fit
implementation for the project. The Open5GS includes basic
monitoring features that are designed for debugging purposes
and produce large volumes of unstructured text directly to the

979-8-3315-9679-8/25/$31.00 ©2025 IEEE

filesystem. The security scenario expects protocol-level infor-
mation that is exclusively accessible at the initial processing.
The system requires the deepest logging level to access the
required data at the expected initial point, therefore, produces
extensive output significantly affecting computational perfor-
mance and physical storage.

To address this gap, this project introduces hooks injected
into the Open5GS source code to collect the required data at
the earliest stage before any further processing. This approach
effectively gathers data at the protocol level to be evaluated
independently of the following OpenSGS flow. The data is
further consumed by the ELK stack. This battle-tested solution
is a balanced choice between a scalable and a performance-
configurable processing pipeline. Debian packages and OS-
specific management is considered as the deployment ap-
proach to enhance performance and avoid virtualization com-
plexity. Further discussion is presented in Section III to
compare and justify the selected approach. Comparison to
existing solutions is provided below in Section II.

II. RELATED WORK

Monitoring of mobile networks and 5G systems is a widely
adopted topic in the academic field. Multiple research projects
are focused on performance benchmarks and service integra-
tion across different Packet Core implementations, especially
on the most widely adopted Open5GS. On contrary, fewer
works address the security aspect of the monitoring and its
own performance overhead in low-latency deployments.

MonArch [2] system presents a modular monitoring ap-
proach that focuses on KPI collection and telemetry with
slice-based data gathering. This system also introduces native
cloud deployment techniques for hardware independence, but
omits security-specific measures in exchange for modularity
and robustness.

The alternative approach of Bhattacharjee et al. [3] empha-
sizes lightweight and open-source tools such as Prometheus
and Netdata to gather telemetry data on the performance of the
system over time. Despite near-real-time performance, it does
not mitigate potential security constraints and is not designed
to gather low-level data for event-driven analysis.

A slightly different approach is presented by the SG-EVE
framework [4] which addresses geographically distributed
multi-site monitoring powered by the Kafka pub-sub mecha-
nism. The Apache Kafka system enables the authors to gather
near-real-time metrics across physically distant services. This

67™ International Symposium ELMAR-2025, 15-17 September 2025, Zadar, Croatia

29
Authorized licensed use limited to: Slovak University of Technology Trial User. Downloaded on January 24,2026 at 13:03:06 UTC from IEEE Xplore. Restrictions apply.

system provides insight into distributed system which is ex-
pected by certain critical use cases, but the monitoring is
focused on metrics instead of events and assumes plain-text
visibility without consideration of TLS-encrypted traffic.

Several studies were selected to explore the attack surfaces
of 5G networks. The Chinese study, conducted by You et
al. [5], provides an in-depth overview of common attack
vectors, including API vulnerabilities in control plane and user
plane. The work motivates us to use TLS encryption with a
combination of IPSec on defined interfaces [1], however, it
does not propose solutions to overcome visibility challenges
for monitoring. Another research focuses on Open5GS and
other popular 5G Core implementations revealing the actual
attack surfaces for the selected Packet Core [6]. Another
military-targeted article provides surface-level insights into the
scope of typical challenges faced in military-grade communi-
cation systems [7], providing valuable information on concerns
related to critical infrastructure. For government usage, South
Korea’s example is described in the paper [8] published by
Seoul’s government that describes a successful example of
mobile network deployment to replace VPNs.

In contrast to these approaches, the system introduced in
the current study focuses on zero-visibility data and min-
imized performance overhead of security-first event-driven
monitoring. The project emphasizes cost-effective OS-specific
deployment over dockerized virtualization and suggests event-
specific data pipeline tools, namely the ELK stack.

III. SYSTEM DESIGN

This section presents a description of the internal architec-
ture and technical justifications for the selected approaches.
We target a monitoring system tailored for a secure, low-
latency 5G Core network based on Open5GS. The main unique
constraints of this solution are internal encryption and full
OS-level deployment to improve performance efficiency. The
system contains three main layers:

e Open5GS: modified Packet Core logic with a custom

UDP-driven report sender

o ELK stack: ElasticSearch + Logstash + Kibana with

reduced resources and custom logstash filter

o Alert system: Includes ElastAlert2 open-source project

as an aternative to Elastic Watchers and custom
lightweight dispatcher server to gather alerts and forward
to Discord webhook.

Open5GS: This part consists of the main Open5GS project,
the release of v2.6.2, and the custom dynamically linked
monitoring library, coupled with the main project by the
Meson build system. This library receives internal reports from
certain predefined events, transforms it to a human readable
version, serializes to JSON and sends it to Logstash via UDP.
Specific hooks were inserted on the lowest protocol level at the
moment the data is only decoded from ASN.1 message, before
any logical processing. This approach allows for seamless
updates considering up-to-date software as a crucial part of
security-focused deployment. In addition, it allows one to
catch metadata that is dropped off in the future processing.

ELK stack: In order to set up a scalable and stable data
processing pipeline, the ELK stack was chosen as an industry
standard. Custom processing rules and filters were created
for Logstash to perform basic checks and store data. Several
examples of single-event alerts are defined in the Logstash
processing configuration. ElasticSearch and Logstash use a
significant portion of system resources (6GB+ RAM) by
default and were reduced to testbed values of 512MB each.
Kibana provides a browser-based user interface for a human
to manually analyze logs with rich graphical tools.

Alert system: The alert mechanism includes ElastAlert2 to
manage complex scenarios that require analysis and Logstash
for single event primitive alerts on suspicious activity. These
two systems send the alerts to a custom lightweight dispatcher
which retransmits them to a predefined Discord Webhook API
i.e. to the end-user.

Figure 1. System architecture for Transport Layer Security resilient monitoring
in Open5GS.

IV. IMPLEMENTATION

In this section, the exact testing scenarios will be described.
Given the secure internal communication, the user-plane ex-
posed interface N2 was chosen. The gNB initial message
and the UE initial message are monitored to demonstrate
the capabilities of the system. Dynamically linked monitoring
library is located at open5gs/lib/monitoring/

gNB initial message: To capture the
about every gMN connection attempt, a
hook was injected into the flow of the function
ngap_handle_ng_setup_request (...) located
at openbgs/src/amf/ngap_handler.c. This hook
consumes fields from the initial gNB message defined in
ASN.1 format [9] (Clause 8.7.1), namely: gNB name, PLMN
ID, and gNB ID. This data is sent to the monitoring library
via void function call. gNB ID and PLMN ID are encoded for
internal usage, therefore the helper functions transform these
data to human readable format. The data is then serialized to
JSON and sent via UDP to Logstash.

UE initial message: UE initial message scenario contains
two hooks in AMF and UDM network functions:

e« AMF: UE initial message first comes to
gmm_handle_registration_request(...)

data
custom

the

function located at open5gs/src/amf/gmm_handler.c

67" International Symposium ELMAR-2025, 15-17 September 2025, Zadar, Croatia

30
Authorized licensed use limited to: Slovak University of Technology Trial User. Downloaded on January 24,2026 at 13:03:06 UTC from IEEE Xplore. Restrictions apply.

[9]. The extracted data is: SUCI, UE PLMN ID, radio
PLMN ID, TAC, Cell ID. The transformed fields are
PLMN IDs, Cell ID split to gNB ID + Sector ID. The
remaining flow is similar to the initial message from
gNB.

« UDM: SUCI is a unique identifier per initial message
and must be decrypted in order to identify the user
by IMSI. The SUCI decryption process takes place
in UDM [10] (Clause 6.12.4). The hook is placed
in the wudm _ue_add(...) function located in the
openbgs/src/udm/context . c file. The reason for
this placement is because different encryptions can be
used, and the report should not concern itself with it at
this stage. The state machine part still meets the project
requirements.

Alert scenarios: There are several monitoring scenarios
made to demonstrate the basic capabilities of the system:

o Suspicious PLMN: Logstash filter sends an alert on
specific forbidden PLMNs (North Korean 467XXX in our
example). Might be useful to identify strange devices in
the area

o Suspicious gNB name: Testing solutions like Pack-
etRusher [11]] or UERANSIM [12] use specific names
to identify their devices. However, this field is ignored
by the Open5GS project above the protocol decoding.
Might be useful to identify nonproprietary devices trying
to connect.

o« PLMN mismatch (No Roaming): The system expects
UE’s PLMN to match gNB PLMN, alerts otherwise.
Filters out all visiting UEs.

o SUCI not decoded: With the help of FElastAlert2, a
check is performed every 30 seconds to retrieve decrypted
SUCIT reports or alert of absence. Alerts a mismatch of
encryption keys.

V. DEMONSTRATION AND EVALUATION

The result of the unencrypted IMSI scenario would be
demonstrated in the following with the scenario of successful
registration without alert.

Selected report scenarios

To test the system, the PacketRusher [11] project was used.
This is an actively developing tool that does not fully support
heavy-load testing; however, it works effectively for general
testability. The installation might be tricky due to a custom
kernel module usage; the testing system is Ubuntu 24.04.

To demonstrate the results of this work, two scenarios were
selected: with failed SUCI decryption and expected report
flow. This is not the full coverage of example scenarios and
not the limits of these system capabilities.

e SUCI not decrypted: If run with the wrong
homeNetworkPublicKey field, IMSI would never
be decrypted, which means that Logstash never saved
any decrypt report. An example of this report is shown
in Fig. 2 without the corresponding SUCI decryption

report. Causes ElastAlert2 to produce an alert that is
sent to the Discord Webhook API depicted in Figure 3.

o Successful registration: Upon successful registration, no
alert is sent in Figures 4 and 5.

Evaluation

The system provides expandable capabilities for resource-
efficient monitoring under security constraints. Demonstrated
examples provide surface understanding of the project capa-
bilities and principles in practical examples. The project does
not claim to be ready for deployment as is, but rather proposes
a unique approach of gathering and analyzing data in 5G Core
Networks.

bits) on interface any, id ©

Figure 2. User equipment initial request with no subscriber concealed identifier
decryption

@) Alort Manager e

report

Figure 4. User eugipment initial request with successful subscriber concealed
identifier decryption

67™ International Symposium ELMAR-2025, 15-17 September 2025, Zadar, Croatia

31
Authorized licensed use limited to: Slovak University of Technology Trial User. Downloaded on January 24,2026 at 13:03:06 UTC from IEEE Xplore. Restrictions apply.

ire (1736 bits), 217 captured (1736 bits) on interface any,

ersion 4, S 68.1.1
ol, Src Port: 38206, Dst Port:

168.1.100

Figure 5. Subscriber concealed identifier decryption report

VI. DISCUSSION

The author acknowledges several limitations of this work in
advance, namely:

e ARM and Debian: The project is partially tested on
ARM architecture, namely Open5GS SA was tested on
Raspberry Pi 5 hardware, the ELK stack is claimed
to be fully compatible with ARM architecture, as well
as Python and Go standard library used for the scripts
in this project. Debian building tool is selected over
Docker for better performance, with the partial loss of
OS-independent deployment.

o Performance testing: The project aims to achieve the
best computational efficiency by utilizing Debian-based
builds, ARM compatibility, and balanced resource man-
agement for the ELK stack; however, the exact deploy-
ment depends on the real-world usage which is not strictly
defined within this work. Performance testing with a
single simulator on a local machine would not show any
valuable results. This testing would require more specific
use cases and extended monitoring/alert scenarios with
additional hardware equipment to measure the perfor-
mance of this solution. This project is outside the scope
of this project due to time and resource limitations.

o ElastAlert2: The ideal alerting mechanism is Elastic
Watchers due to complex scenario support and efficient
integration with ElasticSearch. However, this solution is
only available on a paid subscription of the enterprise
level. ElastAlert2 is used in this work as the best available
open-source alternative; however, it lacks complex joins
and grouping pushing the user to create inefficient queries
manually per each scenario.

VII. CONCLUSION AND FUTURE WORK

This project proposes a unique approach to event-driven
security monitoring in encrypted 5G packet core based on
the Open5GS project. It provides several examples and com-
plete processing pipeline for the alert mechanisms based on
protocol-level controlled data. The design emphasizes minimal

performance overhead and TLS resilience with the Debian-
based OS-optimized deployment with the consideration of
ARM architecture compatibility.

Future work includes extending the monitoring scenarios
based on precise use-cases, deployment of Elastic Watchers
in case of real-world deployment if financially possible and
performance testing of this solution using specific hardware
and real-world scenarios.

ACKNOWLEDGMENT

This project has been supported by Connected and Co-
operative Overtake Maneuver in smart mobility (CCOM)
project within the internal university grant scheme for excelent
teams of young STU researchers and EU NextGenerationEU
through the Recovery and Resilience Plan for Slovakia under
the project No. 09105-03-V02-00014 and by APVV-23-0519
project “Legal and Technical Challenges of Smart Mobility to
Increase Road Traffic Safety”.

REFERENCES

[11 ETSI, “TS 133 501 - 3GPP System Architecture Evolution (SAE);
Security architecture and procedures for 5G System (Release 15),” 2018.
Accessed: 2025-05-09.

[2] N. Saha, N. Shahriar, R. Boutaba, and A. Saleh, “Monarch: Network
slice monitoring architecture for cloud native 5g deployments,” in
NOMS 2023-2023 IEEE/IFIP Network Operations and Management
Symposium, pp. 1-7, 2023.

[3] D. Giannopoulos, P. Papaioannou, L. Ntzogani, C. Tranoris, and S. De-
nazis, “A holistic approach for 5g network slice monitoring,” in 2021
IEEE International Mediterranean Conference on Communications and
Networking (MeditCom), pp. 240-245, 2021.

[4] R. Perez, J. Garcia-Reinoso, A. Zabala, P. Serrano, and A. Banchs, “A
monitoring framework for multi-site 5g platforms,” in 2020 European
Conference on Networks and Communications (EuCNC), pp. 52-56,
2020.

[5] W. You, M. Xu, and D. Zhou, “Research on security protection tech-
nology for 5g cloud network,” in 2021 International Conference on
Advanced Computing and Endogenous Security, pp. 01-11, 2022.

[6] F. Giambartolomei, M. Barceld, A. Brighente, A. Urbieta, and M. Conti,
“Penetration testing of 5g core network web technologies,” in ICC 2024 -
IEEE International Conference on Communications, pp. 702-707, 2024.

[7]1 J. M. Batalla, K. Wrona, D. Brown, F. Wiacek, U. Ruuto, and T. Wichary,
“Threat assessment of 5g networks for military applications,” in 2024
International Conference on Military Communication and Information
Systems (ICMCIS), pp. 01-10, 2024.

[8] N. Kim, T.-Y. Shin, H.-S. Lee, J.-Y. Jung, D. Kang, C.-H. Hong,
D. Kim, and E. Kim, “A study on implementation issues of 5g-based
government network services,” in 2023 IEEE Future Networks World
Forum (FNWF), pp. 1-6, 2023.

[9] ETSI, “ 5G; NG-RAN; NG Application Protocol (NGAP) (3GPP TS

38.413 version 17.4.0 Release 17) ,” 2022. Accessed: 2025-05-09.

ETSI, “ 5G; Security architecture and procedures for 5G System (3GPP

TS 33.501 version 17.5.0 Release 17) ,” 2022. Accessed: 2025-05-09.

HewlettPackard, “PacketRusher,” 2025. Accessed: 2025-05-09.

aligungr, “UERANSIM,” 2025. Accessed: 2025-05-09.

(10]

[11]
[12]

67™ International Symposium ELMAR-2025, 15-17 September 2025, Zadar, Croatia

3
Aut%orized licensed use limited to: Slovak University of Technology Trial User. Downloaded on January 24,2026 at 13:03:06 UTC from IEEE Xplore. Restrictions apply.

