2025 International Symposium ELMAR | 979-8-3315-9679-8/25/$31.00 ©2025 IEEE | DOI: 10.1109/ELMAR66948.2025.11194028

ROSBENCH: A Simulation-Based Benchmark for
Sensor Quality and Environmental Conditions
Robustness in AV Perception

Matej Halinkovic, Miroslav Kunovsky, Marek Galinski

Slovak University of Technology, Ilkovicova 2, 842 16 Bratislava, Slovakia

matej.halinkovic @ stuba.sk

Abstract—The perception capabilities of autonomous vehicles
(AVs) rely on high-quality sensor data to accurately interpret
the environment. Among the key sensing modalities, LiDAR
and RGB cameras offer distinct advantages. LiDAR provides
precise depth estimation and object localization, while cameras
capture rich visual details. However, their effectiveness depends
on factors such as resolution, measurement accuracy, and envi-
ronmental conditions, making a systematic comparison essential
for optimizing AV perception. Sensor fusion, which integrates
multiple sensing modalities, can improve robustness by mitigating
the limitations of individual sensors. The growing reliance on
simulation-based research has accelerated AV development, with
platforms like CARLA providing scalable, cost-effective envi-
ronments to evaluate sensor performance under controlled yet
diverse conditions, including adverse weather and complex traffic
scenarios. In this work, we propose a comprehensive and robust
simulated benchmark ROSBENCH for evaluating the robustness
of Perception and Prediction systems. This benchmark can be
used as a consistent reference point for validating the impact of
environmental and sensor conditions on vision algorithms and is
also easily configurable and thus easily adaptable.
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I. INTRODUCTION

Autonomous vehicles (AVs) rely on high-quality sensor data
for accurate perception and decision-making. As Liu et al.
[1] review, existing AV datasets vary significantly in sensor
modalities, annotation styles, and environmental conditions.
While LiDAR provides precise depth information and RGB
cameras offer rich visuals, leading datasets like KITTI [2],
NuScenes [3], and Waymo [4] differ in how they report sensor
quality.

A key limitation in the field is the lack of a benchmark
for evaluating not only sensor input quality but also the
performance of deep learning models under varying condi-
tions. In practice, researchers often degrade high-quality data
post-hoc via downscaling, compression, or noise injection
to simulate lower-quality inputs. These ad hoc modifications
introduce artefacts that CNNs may overfit to, impairing gen-
eralization [5], [6]. Moreover, current Al models, typically
evaluated on pristine datasets, may not generalize well to
real-world scenarios with fluctuating sensor and environmental
conditions.

To address this, we propose a framework that utilizes the
CARLA simulator [7] to generate sensor data at predefined
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quality levels. By replicating realistic sensor setups and envi-
ronmental conditions, our method avoids artificial degradation,
ensuring reproducibility and fine-grained control over factors
like resolution, weather, and lighting.

Our dataset supports not only perception tasks but the
full Perception and Prediction pipeline, offering diverse en-
vironmental variations and a foundation for rigorous model
evaluation under real-world-like conditions.

Our key contributions are:

o A configurable benchmark for evaluating the impact of
sensor quality in AV perception.

o Realistic simulation of various environmental conditions
using CARLA.

o Simultaneous multi-quality data capture without post-hoc
degradation.

o Support for full Perception and Prediction pipelines

The benchmark data ! and code ? are publicly available.

II. RELATED WORK

To date, no existing dataset provides sensor data at con-
trolled, varying quality levels. Standard AV benchmarks such
as KITTI [2], NuScenes [3], and Waymo [4] offer high-
quality sensor streams widely used for tasks like object de-
tection. However, studies like Dodge and Karam [5] show
that even minor artefacts (e.g., blur, noise) can significantly
degrade CNN performance. Hjaltén [6] similarly highlights
that lossy compression and downscaling lead to blur and
blocking artefacts that reduce classification accuracy. These
findings emphasize that artificial degradation does not reliably
mimic real-world sensor imperfections and may cause models
to focus on artefacts rather than robust object features. This is
especially important when considering simple solutions such
as those proposed by Masarykova et al. [8] which do not have
the learning capacity to overcome and filter out said artefacts.

Simulation environments such as CARLA provide an al-
ternative by enabling controlled, artefact-free generation of
sensor data under diverse environmental and operational set-
tings. This ensures reproducibility and eliminates the need for
post-hoc degradation. It can also help with determining the
sensoric equipment needed for sufficient readability of scenes

Thttps://tinyurl.com/bdtxstwv
Zhttps://github.com/mathali/ROSBENCH.git
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and infrastructure, which is an important consideration [9].
The cost of sensors is a prohibitive factor when it comes to
the adoption of advanced autonomous capabilities; as such,
being able to determine the minimum viable sensor suite for
accomplishing a certain task can be highly beneficial.

NuScenes stands out as a comprehensive multimodal dataset
with 1,000 urban driving scenes captured under varied weather
and traffic conditions. It includes six 1600x900 cameras for
full 360° coverage, a 32-beam LiDAR at 20Hz, five radar
sensors, and synchronized annotations and calibrations. Its
standardized format supports temporal tasks like detection and
motion prediction.

By aligning with NuScenes’ structure, our benchmark en-
sures compatibility with existing models while extending
capabilities to quality-controlled data generation. This com-
patibility enhances usability and underscores the importance
of standardized tools for evaluating sensor performance.

In sum, while existing datasets provide high-quality data,
they lack consistent methods for assessing the impact of sensor
quality. Our work leverages CARLA’s simulation to fill this
gap, offering a tool for generating multi-quality sensor data
without introducing artefacts.

IIT. PROPOSED BENCHMARK

Building upon the structured sensor configurations of the
NuScenes dataset, our work presents a novel framework de-
signed to generate synthetic sensor data with configurable
quality parameters. Our framework leverages the realistic
simulation environment provided by the CARLA simulator
to produce data at the desired quality levels directly without
relying on artificial post hoc degradation.

Our approach replicates the sensor placements from
NuScenes, particularly for cameras and LiDAR sensors. How-
ever, the flexibility of the CARLA simulator affords us several
key advantages. First, we can position multiple virtual cameras
at identical physical locations and orientations. Each of these
cameras can be configured with varying imaging parameters,
such as resolution, f-stop and ISO. This design enables the
simultaneous capture of the same scene at multiple quality
levels.

Furthermore, the use of CARLA allows us to exploit its
fully controllable environment. We can systematically vary
environmental conditions, including weather phenomena (e.g.,
rain, fog, and varying light conditions), traffic scenarios and
road types to create a diverse and representative dataset.
We include 500 scenes, each lasting 20 seconds, generated
from different CARLA maps and under a broad spectrum of
environmental conditions. This extensive variability is critical
for evaluating the robustness of object detection models under
real-world conditions and for assessing how sensor data quality
influences model performance.

A. Generation Process

The simulation script used to control the generation process
is robust, considers various environmental aspects and is fully
configurable and easily adaptable. All scenes are set up in the
following manner:

a) Spawn the ego vehicle at a predefined location: The
location can be either manually specified or randomly selected
from the list of all available spawn points on the currently
loaded CARLA map.

b) Populate the environment with other actors, such as
cars, trucks, motorcycles, buses, and pedestrians: The number
and types of actors can be configured; in the current setup,
vehicles are spawned at random positions using available
spawn points. This introduces variability across scenes and
enhances environmental diversity for each simulation run.

c) Attach sensors to the ego vehicle: Sensors are con-
figured and loaded dynamically from external JSON configu-
ration files, allowing flexible setup of sensor types, positions,
and parameters. The default positioning of cameras, for all
quality levels, adheres to the Nuscenes positioning as shown
in Figure 1, which allows for easy validation of existing
solutions.

d) Start autopilot for all actors: This initiates the move-
ment of all spawned actors, including the ego vehicle, enabling
dynamic and realistic traffic interactions during the simulation.

Figure 1. Default camera positioning adheres to Nuscenes [3].

Scene setup can be adjusted by modifying scenes.json
and types and quality of sensors can simply be adjusted in
sensor_config.json. This lets a user easily adapt the benchmark
to their specific needs with ease.

All dataset components are structured according to the
NuScenes data format [3], ensuring compatibility with existing
tools, benchmarks, and model architectures developed for
NuScenes. This includes:

o Sensor calibration files (calibrated_sensor.json)

o Ego poses and timestamps (ego_pose.json,

sample_data.json)

e Object annotations with 3D bounding boxes (sam-

ple_annotation.json)

o Scene metadata and logs (scene.json, log.json)

e Sensor configuration and mappings (sensor.json, sam-

ple.json)

Camera images are stored as JPEG files and follow the
NuScenes directory layout, organized by sensor name and
timestamp. LiDAR point clouds are provided in binary .bin
format and linked via sample_data entries. Data from multiple
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quality levels is captured simultaneously, with each quality
level treated as a distinct sensor in the metadata.

CARLA provides ID tracking of actors across time, allow-
ing for bounding box tracking across time. However, only
dynamic actors, those manually spawned during simulation
setup, can be reliably accessed and tracked. Static actors, such
as parked cars or objects embedded in the map like traffic
lights, are not directly exposed through the same interface
and do not provide actor IDs or bounding boxes that can be
tracked over time. Thus, to be able to facilitate the inclusion of
static actors while maintaining the robustness of provided an-
notations, we devised the following prediction-based bounding
box matching Algorithm 1, which supplements and matches
unmatched bounding boxes by filtering existing boxes based
on their last known positions and velocities.

Algorithm 1 Prediction-Based Bounding Box Matching

Data: A set of candidate tracks candidates, a detected bound-
ing box det with centroid det.centroid, prediction
radius R.

Result: Matched track matched and match_method.

matched < None

if matched = None and candidates # () then
best_dist < 400

best_track < None
foreach t in candidates do

velocity < t.last_centroid — t.prev_centroid
predicted < t.last_centroid + velocity
d < ||det.centroid — predicted)||
if d < best_dist then

| best_dist < d best_track < t
end
end
if best_dist < R then
matched < best_track
match_method < "prediction"

end
end
if matched = None then
// Optional fallback if no prediction
match
Try order-based fallback if still no match then
| Create a new track and set matched
end

end

if matched # None then
| Update the state of matched
end

B. Dataset Statistics

Our dataset includes sensors configured with multiple qual-
ity levels. For the cameras, we support three quality settings:
Low, Mid and High with adjustable resolutions and intrinsic
parameters (f-stop, ISO, shutter speed, etc.). The predeter-
mined quality settings of RGB sensors can be seen in Table 1.

TABLE I. Camera Sensor Specifications. The field of view (FOV) for the
back-facing camera is set to 110°, while the FOV for all other cameras is
70°.

Quality | Resolution | f-stop | ISO | Shutter Bloom /
Level Speed Lens Flare
High 1920x1080 8.0 100 500 ms -/ -
Mid 1280x720 4.0 200 200 ms 03/0.1
Low 854x480 4.0 800 100 ms 0.4/0.2

For LiDAR, three quality levels are defined by parameters
such as the number of beams, range, points per second,
and field-of-view (FOV) settings. In addition, the capturing
frequency of sensors is set to 10 fps for the cameras and 10 Hz
rotation frequency for LiDAR. The predefined LiDAR quality
level settings can be seen in Table II.

TABLE II. LiDAR Sensor Specifications

Quality | Beams | Points/sec | Atten. Dropoff Noise
Level Rate

High 64 1,300,000 0.003 (0.25, 0.7, 0.3) 0.01

Mid 32 300,000 0.004 (0.35, 0.8, 0.4) 0.01

Low 16 150,000 0.005 (0.45, 0.8, 0.5) 0.02

As a result, each 20-second scene produces approximately
200 samples, and with a total of 500 scenes, this yields
around 100,000 samples per quality level for each camera.
Considering six cameras and three quality levels, the dataset
comprises approximately 1.8 million image samples in total.
A comparable sampling strategy is applied to the LiDAR
sensor, generating 100,000 samples per sensor configuration
amounting to 300,000 samples overall. In each scene, we
provide annotations for 7 classes - car, truck, motorcycle,
pedestrian, bicycle, bus, and traffic light. In total, we provide
annotations for 1.3 million unique bounding boxes (Figure 3)
and 13,375 unique actor instances distributed as shown in
Figure 2.
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Figure 2. Unique instances per category (log scale) provided by ROSBENCH

To ensure diversity and robustness under varying environ-
mental conditions, the dataset incorporates a comprehensive
range of weather and lighting scenarios across four distinct
urban maps: Town01, Town03, Town04, and Town10HD. Each
map includes data collected under five predefined weather pre-
sets: ClearNoon, ClearSunset, ClearNight, HardRainNoon, and
HardRainNight. These settings encompass a broad spectrum
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TABLE III. Feature Comparison of ROSBENCH with Major AV Datasets (v'= Supported, X= Not Supported)

Dataset RGB 360° RGB LiDAR Sensor Quality ‘Weather Lighting Tracking /
Variants Prediction

ROSBENCH v v v v v v v

nuScenes [3] v v v X v v v

KITTI [2] v X v X X X v

Waymo [4] v v 4 X v v 4

Argoverse [10] v v v X v v v

V2X-Sim [11] v v v X X X v
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Figure 3. Bounding boxes per category (log scale) provided by ROSBENCH

of illumination levels and visibility challenges, from high-
contrast daylight to low-light nighttime conditions and heavy
rainfall. For each weather condition within each town, 25
scenes were recorded, resulting in a well-balanced distribution
of environmental variations. This diversity, combined with
the extensive volume of data, provides a robust foundation
for training, validating, and testing Perception and Prediction
models capable of generalizing across a wide range of real-
world scenarios.

IV. CONCLUSION

ROSBENCH introduces a configurable and reproducible
platform for evaluating autonomous vehicle perception and
prediction systems. Unlike existing real-world datasets, which
rely on fixed sensor setups and uncontrollable environmental
conditions, ROSBENCH enables systematic manipulation of
sensor parameters (e.g., resolution, noise) and scene attributes
(e.g., weather, lighting). This supports rigorous benchmarking
of model robustness under a wide range of scenarios.

As shown in Table III, ROSBENCH uniquely supports
sensor quality variation, full 360° RGB and LiDAR coverage,
and diverse environmental conditions, distinguishing it from
datasets like KITTI, Waymo, and nuScenes. These features
enable targeted studies on sensor degradation, adverse condi-
tions, and fusion strategies.

Furthermore, the availability of dense ground truth and
consistent object IDs over time makes ROSBENCH suitable
for multi-object tracking and trajectory prediction tasks. Its
fully synthetic nature also makes it ideal for sim-to-real
research via domain randomization and adaptation.

interpretations are solely those of the authors.
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