
Slovak University of Technology Bratislava

Faculty of Informatics and Information Technologies

Ing. Peter Bakonyi

Dissertation Thesis Abstract

Data centered network enhancement

to obtain the Academic Title of philosophiae doctor (PhD.)

Degree course: Applied Informatics

Field of study: Applied Informatics

Form of study: Internal

Workplace: Institute of Computer Engineering and Applied Informatics,

FIIT STU Bratislava

Bratislava 2023

Dissertation Thesis has been developed at the Institute of Computer Engineering

and Applied Informatics, Faculty of Informatics and Information Technologies,

Slovak University of Technology in Bratislava.

Submitter: Ing. Peter Bakonyi

Location: Institute of Computer Engineering and Applied Informatics
Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava

Supervizor: prof. Ing. Ivan Kotuliak, PhD.

Reviewers: prof. Ing. Pavel Segeč, PhD.
Doc. Ing. Miroslav Michalko, PhD.

Keywords: Software defined networks, Content delivery network
Machine learning

Dissertation Thesis Abstract was sent:

Dissertation Thesis Defence will be held on at pm at the Institute of

Computer Engineering and Applied Informatics, Faculty of Informatics and Infor-

mation Technologies, Slovak University of Technology in Bratislava (Ilkovicova 2,

Bratislava).

Prof. Ing. Ivan Kotuliak, PhD.

Dean of FIIT STU in Bratislava

Annotation

Slovak University of Technology Bratislava

Faculty of Informatics and Information Technologies

Degree Course: Applied informatics

Author: Ing. Peter Bakonyi

Dissertation Thesis: Data centered network enhancement

Supervisor: prof. Ing. Ivan Kotuliak, PhD.

July 2023

The improvement of QoS in networks is now more critical than ever. The insurance

of the smooth functioning and content deliverability in the network is becoming

harder with the increased load in past years. Components like maintenance, scal-

ing, content caching, and network utilization need to be continuously monitored to

ensure high QoS. We focus on creating a network where artificial intelligence takes

care of it. With that, we create a zero-touch network and enhance QoS.

Anotácia

Slovenská technická univerzita v Bratislave

Fakulta informatiky a informačných technológií

Študijný program: Aplikovaná informatika

Autor: Ing. Peter Bakonyi

Dizertačná práca: Dátovo Orientované vylepšenie počítačovej siete

Vedúci dizertačného projektu: prof. Ing. Ivan Kotuliak, PhD.

Júl 2023

Zlepšenie QoS v sieťach je teraz kritickejšie ako kedykoľvek predtým. Poistenie

plynulého fungovania a dodávky obsahu v sieti sa so zvyšujúcim sa zaťažením v

posledných rokoch stáva ťažším. Súčasti ako údržba, škálovanie, ukladanie ob-

sahu do pamäte cache, využívanie siete sa musia nepretržite monitorovať, aby

sa zabezpečila vysoká QoS. Zameriavame sa na vytvorenie siete, kde sa o ňu

stará umelá inteligencia. Týmto vytvárame sieť s nulovým dotykom a vylepšu-

jeme QoS.

Contents

1 Introduction 1

1.1 Zero touch networks solutions . 2

1.1.1 Training and accuracy . 3

1.1.2 Deploying machine learning 3

1.2 Preemptive content caching . 3

2 Problem statement 5

2.1 Definition of the problematic area 5

3 Solution proposal 7

3.1 Proposed Architecture . 7

3.1.1 Network . 8

3.1.2 Controller . 9

3.1.3 APIs . 9

3.1.4 Storage . 9

3.2 Prepared test cases . 10

4 Solution verification 11

4.1 Prototype Implementation . 11

4.1.1 Testing enviroment . 11

5

Contents

4.1.2 Testing scenarios . 12

4.1.3 Networking setup . 12

4.2 Colected Data . 13

5 Result evaluation 14

5.1 Data storage and containerization 14

5.1.1 Topology data . 15

5.1.2 Surrogate server data . 16

5.2 Apllication of machine learning . 17

5.2.1 Network load classification 17

5.2.2 Surrogate server selection 19

5.2.3 Result verification . 20

5.2.4 Neural network verification 25

6 Conclusion 26

A Publications 29

6

Chapter 1

Introduction

Quality of Service (QoS) is one of the essential features of modern networks. In

the past decades, the usage and popularity of computer networks increased with a

high demand for quality of service. Software-defined networking (SDN) have been

around for a couple of years now. They are participating in many academic papers

because of their research potential. Content Content delivery network (CDN) can

be implemented to cache data to bring data temporarily close to end users and

to lower the load from Origin servers. We create promising research potential by

combining it with SDN. Nevertheless, like many areas, adding Machine Learning

(ML) opens a new dimension of possibilities altogether. Automation of networks

is a concept called Zero-touch networks. The idea is to combine ML into decision-

making parts of networks and let the network make its own decisions.

In this work, we discuss the state of the art in our chosen research area—innovative

networking approaches combined with ML and CDN and the idea behind zero-

touch networks. More precisely, load detection and load balancing in SDN net-

works that utilize CDN.

1

Chapter 1. Introduction

We aim to create a new algorithm and a management system for SDN and CDN

utilizing ML. The primary focus is on dynamically distributing content requests

and optimize bandwidth utlization thereby lessen bottlenecks on potential critical

network nodes with the addition of a management system.

The following chapter will be the state of the in our chosen research before we

where we state our problem. A clear definition of the area we want to increase the

QoS is crucial. Mainly network data gathering, storage, and its proper utilization.

Consequently, the definition of the hypothesis of our goal is in this thesis. The

short introduction in the problematic areas sub-parts gives us an idea and a more

unobstructed view of issues in networking that result in low QoS. The main focus

is enhancing network utilization, monitoring and data handling to get closer to

a true zero-touch network. Following the proposal and implementation, we will

describe our testing scenarios and our applied ML models, which contributed vastly

to enhancing the quality of SDN.

1.1 Zero touch networks solutions

One vision of the networks of tomorrow is zero-touch networks. Theoretically, they

should work autonomously without needing human personal intervention[4]. It can

correct itself, update, autoscale, and maintain itself based on the help of neural

networks Virtualized Network Function (VNF) and SDN. With the combination

of VNF and SDN orchestration, quality of service is significantly raised. As for the

VNF functionality, it provides excellent help for SDN in the traffic handling and

processing as it is responsible for the stateful parts of the network and the SDN

for the stateless, for example, switches[6].

2

Chapter 1. Introduction

1.1.1 Training and accuracy

To create an efficient model, we need large amounts of high-quality training data to

ensure greater accuracy in models[1]. Training and re-training of models require

data and computational power. Models need to be robust and create real-time

decisions; otherwise, the QoS would be decreased[1].

1.1.2 Deploying machine learning

Alongside ML solutions, data analytics play a crucial role in predicting traffic

demand[1]. Zero touch network relies heavily on ML approaches to enhance QoS.

Solutions enhancing SDN with ML need to be trusted and transparent, as well as

the data source on which the ML solutions are trained on[1]. Explaining models

is also crucial for understanding the decision process of the solutions. The earlier

shallow ML approaches were easy to understand as their complexity is not as high

as a deep neural network with multiple layers [1]. Therefore, it can pose as a black

box in which the decision-making process is complicated.

1.2 Preemptive content caching

Optimal usage of content caching tools such as CDN is critical to ensure the QoS

from the content owner’s and client’s view. Nowadays, it is not enough to have

content cached on the nearest CDN cache node to the client, but the network load

plays a crucial role in the right CDN cache node selection[2]. For example, when

the nearest surrogate server to the client has a high content delivery time. Due

to the lack of available bandwidth in the network node connecting the CDN cache

into the network[8]. It results in the need to search another CDN cache node. To

achieve a new surrogate selection, we need to select an efficient redirection method

for the selection process. One popular method is a request router and Hypertext

3

Chapter 1. Introduction

Transfer Protocol (HTTP) redirection. As seen in the image 1.1, when a request for

some content is created, the Uniform Resource Locator (URL) refers to the request

router instead of a CDN cache node. The request router processes the request and,

via HTTP message 302, redirects the client to a CDN cache node.[7].

Figure 1.1: HTTP redirection[7]

4

Chapter 2

Problem statement

2.1 Definition of the problematic area

The goal of the thesis is to create a new SDN network management

system to dynamically optimize content delivery and increase the uti-

lization of network resources. The new network management system

uses novel algorithms in data handling. This is a step towards a zero-

touch network; therefore, we discuss it later on. As the previous chapter

mentioned, machine learning is making its way into networking, which has con-

tributed to creating a long leap from the legacy approaches of the last years.

However, the solutions we found are solving just one issue or a specific use case. A

problem with creating solutions in specific areas is that they are incompatible and

ultimately need better implementation and real capabilities. Also, the data logging

currently in SDN is at a reasonably low level. SDN provides the ability to extract

network information, and sFlow can extract network information and create basic

low-level statistics. With the overall utilization of this data, not to mention logs

from CDN nodes, we can collect essential data that needs to be utilized correctly.

5

Chapter 2. Problem statement

Incorrect utilization also goes for attempts to create zero-touch networks, which

could theoretically handle maintenance, rerouting, and adaptive bandwidth uti-

lization. As stated in the previous chapter, the idea behind zero-touch networks

is complete autonomy. The software side of the networking is planned, sched-

uled, and executed by programs in the network. Some of our biggest issues are

efficient network utilization on single controller SDN, where we want to stabilize

load-balancing issues between network nodes caused by CDN content requests. A

Zero touch network that could enhance service quality has yet to be created.

6

Chapter 3

Solution proposal

3.1 Proposed Architecture

In Figure 3.1, we can see the proposed architecture of our solution. The main idea

is to build a low-cost dynamic infrastructure around an SDN network. Enabling

data and log transfer to various custom APIs, which can consume/forward or

process the input in a required format and as fast as possible. We will need APIs

that can efficiently handle data and perform ML operations. Connectability to

storage services is needed to archive gathered data and enhance the network even

more in the future.

7

Chapter 3. Solution proposal

Figure 3.1: High level Architecture

3.1.1 Network

The network itself needs to be able to communicate behind its SDN borders, and it

needs to communicate with external APIs and, of course, the controller. Dynamic

access is key because we will do multiple testing scenarios in the network. We will

also need to scale the network between testing scenarios with minimal interaction

with the network configuration. We will need to emulate multiple surrogate servers

for testing purposes. It will be deployed in the network part of the infrastructure

layer as seen in Figure 3.1. A possible solution for the dynamic distribution of

content requests is the application of a request router. We can outsource the

decision-making onto the application level via HTTP requests carrying the original

content request payload while returning the chosen surrogate server. Thereby, the

client receives only a redirect message to a specific surrogate server available for

8

Chapter 3. Solution proposal

him for that specific request.

3.1.2 Controller

The controller needs to be maintained, which has support to this day. The ability

to connect to different external APIs is needed. Otherwise, we will need the current

standard functions of SDN controllers.

3.1.3 APIs

APIs will have multiple diverse functions; therefore, we must carefully consider the

programming language or languages we choose. Another requirement is to choose

a language that enables the application of ML models. The APIs will use servers as

AI modules, data transfer, transformation services, monitoring, and other services.

HTTP protocols will be used for all communication.

3.1.4 Storage

We will need two types of data storage. Firstly, short-term storage will be an

intermediary and can handle large data loads during deployment. It also needs to

be able to handle multiple active connections, both sending and pulling data. The

retention of this storage can be a few because of fail-safe reasons. On the other

hand, we will need permanent storage to store the data from the intermediate

storage for longer. We chose a relational database for our solution because we can

utilize complex queries on the stored data for analytical purposes. A relational

database is sufficient for our solution. However, a non-relational database is still

being determined.

9

Chapter 3. Solution proposal

3.2 Prepared test cases

Following the definition of the architecture, we need to define the test cases that

will be tested in the network. These cases will help us to achieve our milestones.

Utilizing the given network and neural networks as efficiently as possible.

As we aim to create a more efficient way to request routing with ML, we need

test cases that will provide us with valuable training data. We must create a

testing application to run on the hosts in the SDN. The application needs to

create content requests to create a bottleneck between the surrogate servers and

the nearest switch connecting it to the remaining network devices.

Expected results

During testing, we expect the content request distribution to be uneven. This

means the surrogate servers with a larger portion of the host nearest to them will

have more content requests; therefore, we expect the available bandwidth to be low

or nonexistent. After implementing our solution, we expect the content request

distribution to be evenly divided among all the surrogate servers, or there will

be groups of surrogate servers with even load distribution regardless of content

requests.

10

Chapter 4

Solution verification

4.1 Prototype Implementation

We implemented an SDN/CDN sandbox. We needed two virtual machines where

the sandbox was running separately and the request router, which handles CDN

redirection separately. Regarding external network connectivity, the virtual ma-

chines were interconnected with each order, and we also created a connection to

the machine where the controller, Application Programming Interface (API)s, and

the dockerized part will run. Following this step, we set the SDN controller appli-

cations up and ensure the connectivity of the different user environments.

4.1.1 Testing enviroment

We used a computer with the Windows operating system where the controller,

controller applications, dockerized Kafka, PostgreSQL, and the ML modules were

running. To ease communication, we emulated the request router and SDN sand-

box on the same machine on two separate virtual machines running Ubuntu with

a bridged network adapter.

11

Chapter 4. Solution verification

4.1.2 Testing scenarios

We decided to emulate extensive network usage of clients downloading different

content types. The speed and file size were scaled down due to hardware limita-

tions. We scaled megabytes to kilobytes regarding network speed and file size to

stay as close as possible to a functioning network. We created multiple testing runs

on the same topology with the same setup. Content and network requests were

randomized in a matter of the time the content was requested, and the content

type and size were randomized.

• Data collection from the network during testing runs

• Heavy network load with content demands from clients

• Data logging

To ensure the correctness of our solution, we manually evaluated all the decisions

created and the effect they would have on the network.

4.1.3 Networking setup

The mininet address range was 10.11.0.1-45. We had designated Internet Pro-

tocol (IP) addresses for the request router, origin server, surrogates, and client

devices. The controller was outside of the virtual machines where the testing took

place. Therefore, in the network setup, we connected the network layer via the

remote controller connection to the local host of the computer where the VMs

were running. As the mininet network and request router were on a different

VM, we created a bridged adapter where we statically assigned an IP address for

the request router and port via which it connected to mininet. The application

layer applications and storage service were running on the same device as the

controller.

12

Chapter 4. Solution verification

4.2 Colected Data

We had two data collection channels. The primary data source was collected in

a Ryu application, which selects surrogate servers in a CSV format for content

delivery. The secondary data source was via REST API, which Ryu controller

can expose so requests can be made and response payloads are stored in JSON

format. As for the form of the data, we collected the Received and transmitted

bytes. We also increased the size of the network testing environment in two stages.

The reason was that with the originally proposed network, which contained only

a few end devices, the initial analysis showed promising results.

First increment We increased the number of surrogate servers to eight. With

the increase, we wanted to monitor the surrogate selection and change in network

utilization, leaving the original number of end devices the same.

Second increment The final scaling of the network was done by increasing the

number of end devices to 35 and 49 virtual switches. Gaining more versatile data

for further analysis and processing.

13

Chapter 5

Result evaluation

5.1 Data storage and containerization

To prove the concept of temporal storage and provide the environment for data

analysis, We utilized a dockerized Kafka client with Zookeeper. We used an exist-

ing image to prove that we can use existing images from [9]. The basis of the image

was Kafka, Zookeeper, KSQL, and Grafana for load monitoring of its utilization.

The setup of the topics was a single partition with a single broker since it was

sufficient for our testing purposes. It is entirely possible to use multiple partitions

and brokers. If we wanted to deploy the solution, we would emphasize parallel

applications, which would need more computing resources. As for the message

setup, we used a simple JSON structure. We did not implement a key structure

for messages since the structure was not dependent on data point order. Other pa-

rameters, such as topic retention, were defaulted for seven days. We implemented

Python-based consumers and producers, which performed data transformations

and storage into PostgreSQL tables for more long-lasting data storage.

14

Chapter 5. Result evaluation

Source Target Port Transmitted bytes Received bytes Bandwidth
2 10.11.0.9 2 753739.0 701164.0 254968.727273
4 10.11.0.11 6 621942.0 25437.0 9690.285714
4 10.11.0.12 7 15252.0 10155.0 3868.571429
4 10.11.0.13 8 94894.0 7110.0 2708.571429
5 10.11.0.14 1 91667.0 4762.0 1814.095238

Table 5.1: Topology data sample

5.1.1 Topology data

We utilized NetworkX to search for the selection of shortest routing paths and

created a rest API from which we collected data in a JSON format, which repre-

sented the network in a Digraph format. Enable us to replicate the network link

utilization as it was monitored regularly. The data is processed into a format as

seen in Table 5.1 for the content request data. We logged information about the

request itself, the requester IP address, surrogates sorted by location, the available

bandwidth of those surrogates, the request file name, and the time when it was

requested.

We decided to classify the network load per our defined bandwidth to create the

machine learning-based network load classification requirements. The measure-

ments are broken down into three groups: Link Not Used, Link Used, and Heavy

Load.

• Link Not Used if the bandwidth was under the five quantiles of measurement

group.

• Heavy load if the bandwidth was over 85 quantile of the measurement group

• Link Used if the bandwidth was between the other two classes.

15

Chapter 5. Result evaluation

Client IP address Filepath Size of the requested file
10.11.0.45 /movies/movie170.avi 53
10.11.0.45 /movies/movie158.avi 79
10.11.0.38 /videos/video102.avi 23
10.11.0.45 /movies/movie117.avi 56
10.11.0.38 /movies/movie251.avi 63

Table 5.2: Collected content request sample

5.1.2 Surrogate server data

Regarding the data needed for surrogate selection, we decided to log more data for

analytical purposes and important features for machine learning. Data such as the

IP address of the end users (clients in the network), the file the surrogate server

delivered, and the size and size class can be used in further analysis to enhance

content type caching on surrogate servers to avoid cache misses. In this case, the

attributes of size and size class of files only enhance the network. We can see some

example data logs in Table 5.2 in the format and form they were collected during

testing.

As for the more relevant data for the machine learning process, we chose to collect

three relevant features of the network:

• Client source Internet Protocol version 4 (IPV4) address used in the network

• all the surrogate servers orderer from nearest to farthest from the client based

on shortest path algorithm

• The bandwidth of the network link before the surrogate CDN server, which

represents the load on them

The bandwidth calculation was the same as with the topology data. We displayed

only the first 3 in the example below for extensive reasons. The surrogates were

logged in the form of IP addresses in the network and the bandwidth in bytes as

16

Chapter 5. Result evaluation

Surrogate 1 Surrogate 2 Surrogate 3 Bandwidth 1 Bandwidth 2 Bandwidth 3
10.11.0.10 10.11.0.9 10.11.0.8 1453.369863 1407.783784 1498.057143
10.11.0.10 10.11.0.9 10.11.0.8 1453.369863 1407.783784 1498.057143
10.11.0.3 10.11.0.6 10.11.0.2 1478.888889 1438.197183 1428.056338
10.11.0.10 10.11.0.9 10.11.0.8 1453.369863 1407.783784 1498.057143
10.11.0.3 10.11.0.6 10.11.0.2 1478.888889 1438.197183 1428.056338

Table 5.3: Collected bandwidth and surrogate information sample

can be seen in Table 5.3.

5.2 Apllication of machine learning

We decided to use the same machine learning approach for the prediction of net-

work load and for surrogate selection, which was multiclass classification. The

traditional approach does not provide the flexibility and the ability to learn as

efficiently as neural networks.

5.2.1 Network load classification

We applied several shallow classification algorithms to verify our data extraction,

cleaning, and possible network load. As a best practice when applying machine

learning to a new use case dictates, we needed to test the classification potential

of the data and our common goal. Therefore, we chose neighbor, Gaussian, Re-

gression, and tree-based classification algorithms. As we can see, the result shows

great potential in our approach, and at this point, we had high hopes for achieving

our goal. The settings on the classifiers were the default ones, as we only wanted

to test the potential of the data. Our foresight in the data preparation paid off,

and the normalized data were a good choice since the GaussianNB classifier also

returned according to the accuracy metric above 98%

With this newly gained confidence, we tried to apply a more complex approach

17

Chapter 5. Result evaluation

Layer Architecture
Input 8

Hidden Layer 1 (IL) 8 → 64
Hidden Layer 2 (HL1) 64 → 128
Hidden Layer 3 (HL2) 128 → 64
Output Layer (OL) 64 → 3
Activation Function ReLU (for all)

Table 5.4: Neural network architecture for network load classification

to tackle this issue. We have chosen a relatively small dataset with around 1

million data points. This amount is sufficient to create a neural network with

a few hidden layers. Therefore, the approach is more commonly known as the

application of deep learning. To create a network that has the potential to serve

accurate real-time predictions about network status, we implemented and tested

Recurrent Neural Network (RNN) and Artificial Neural Network (ANN) networks.

After initial testing, we chose to rely on an ANN network, and we attempted to

optimize the hyperparameters of the network. From the knowledge gained from

the previous network, we chose to use four linear layers with backpropagation. The

complexity of this use case was relatively smaller than 5.2.2. According to that,

we had a shorter learning period of just under five thousand iterations.

We also added the same overfitting prevention methods for this network and

stopped the training after the tolerance limit was reached, which was 16. In

this figure, we can see that it seems that the model hit the local minimum when

training, and for a few epochs, it stopped improving, but in the end, we got the

loss function value down to 0.07.

Our final neural network can be seen in Table 5.4. It contains four hidden layers,

where two are hidden. The activation functions used were Rectified Linear Unit

(ReLU) in all layers.

18

Chapter 5. Result evaluation

5.2.2 Surrogate server selection

We already knew that the application of machine learning as in our previous work

[2] has potential. Therefore, we went straight for deep learning approaches, which

could enhance the network load balancing even more. Our chosen metric was to

minimize bandwidth utilization on the nodes connecting the surrogate servers to

the rest of the network. To be more precise, the goal of our dynamic surrogate

selection approach was to select the surrogate server with lower bandwidth uti-

lization than the nearest surrogate server. Mitigating the risk of a bottleneck near

the surrogate servers. We utilized deep neural networks to achieve our enhance-

ment. To be more precise, an Artificial neural network is more commonly known

as ANN. ANN was the final result of our rigorous tests. We hoped that recurrent

neural networks or networks such as Long short-term memory networks would pro-

vide the best results; however, ANN took the spotlight regarding accuracy. The

main challenge after selecting the ANN approach was to select the appropriate lay-

ers, activation functions, batch sizes, and other hyperparameters for the network’s

training process.

The best criterion was the cross entropy loss commonly used in linear problems.

To ensure a stable learning process, we also needed to include an optimizer for

our model, such as Stochastic gradient descent or the many variations of the so-

called Adaptive moment estimation (Adam) optimizer family. After testing, we

chose the learning rate 0.0001 and Adam’s newest variation, the Adaptive moment

estimationl with weight decay (AdamW). It is based on Decoupled Weight Decay

Regularization[5]. In simple words, it is a type of L2 regularisation method. The

final step in the training process was to choose the training batch sizes. With

the batch size, we determined the amount of training data points flowing into

the training per iteration in a given epoch. The number was sixteen, resulting

19

Chapter 5. Result evaluation

in the best training results as seen in the wandb Figures ?? and ??; the loss

decreased after the half-million iteration mark. That was the moment we applied

the mentioned changes to the model. Resulting in a final training loss of 0.35 and

99 percent accuracy on the testing data.

Being satisfied with the network, we had to add contingencies to prevent an over-

fitting model at the end of the training process. Therefore, we added two methods

to achieve it. The first method was the application of dropout, which temporarily

removed some nodes in the network layers. It is a common method to see how the

network copes with information loss. The second method was the addition of early

stopping in the training cycle. The tolerance was set to fifteen, which means if the

network itself does not improve in loss during 15 epochs, the training process is

stopped, and we contribute to overfitting prevention.

5.2.3 Result verification

To summarize our results, we achieved network load classification, a crucial step for

future network enhancements with the help of machine learning. Furthermore, we

can apply deep learning to load balance content delivery. for easier uderstanding

of the surrogate servers we will call them CDN1-8. To validate our approach, look

at Figure 5.1, where the current approach of nearest surrogate selection is applied

if we can see that the bandwidth utilization on most of the nearest CDN surrogates

ranges from 400 to 800 KB from with the limit being 1MB, except surrogate CDN7.

The reason was that it had the fewest end devices in its proximity; therefore, it

had a relatively small number of content requests than the others.

20

Chapter 5. Result evaluation

Figure 5.1: Chosen surrogate CDN server before testing

On the other hand, if we take a close look at Figure 5.2, we can see that we de-

creased the overall utilization of surrogates when selecting the or, more specifically,

we chose the surrogate servers, which had visibly lower loads at the time when the

selection process was taking place. Therefore, there was a considerable increase in

selection efficiency and content delivery.

21

Chapter 5. Result evaluation

Figure 5.2: Chosen surrogate CDN server after testing

For a clearer picture, we plotted a comparison of the host with the id 35 with the

nearest surrogate selection and our dynamic approach in figure 5.3. We took the

sample from the middle of the testing scenario. We can see that the nearest surro-

gate to the client has mostly higher utilization than the dynamic selection process.

The overlay between the lines on the line plot is when the nearest surrogate was

selected in our approach, which means its utilization was lower than that of other

surrogates.

22

Chapter 5. Result evaluation

Figure 5.3: Nearest surrogate selection and our approach bandwidth utilization
comparison

To be more precise, if we look at the count plot in figure 5.4, we can see that the

CDN3 is the nearest surrogate sever for the client with the id 35 in the testbed.

This means that when applying the nearest surrogate selection approach, all re-

quests from the client go CDN3. On the other hand, with our dynamic selection

process, the client’s requests were served from four different surrogate servers dur-

ing testing. This means that the model successfully selected a surrogate server

with lower bandwidth utilization, and when the nearest was selected, it had low

utilization.

23

Chapter 5. Result evaluation

Figure 5.4: Redirection distribution in the tested scenarios

With the comparison of the results in Figure 5.1, where the load of the surrogate

servers is not evenly distributed, and Figure 5.5, where we can see the result

comparison of our proposed solution and the nearest surrogate selection approach,

we can see that the distribution of the surrogates is even within three subgroups

reasoning the number of clients in the proximity of the surrogate serves. The

subgroups are:

• CDN4, CDN2 and CDN1

• CDN8 and CDN6

• CDN3, CDN7 and CDN5

24

Chapter 5. Result evaluation

Figure 5.5: Nearest surrogate selection and our approach bandwidth utilization
comparison

Each of the surrogate subgroups is almost even distributed between surrogate

serves. Therefore, we successfully distributed content delivery between multi-

ple surrogate servers where multiple servers were considered. Therefore, we have

proven our proposed solution valid and decreased the load on the critical nodes of

the network.

5.2.4 Neural network verification

Both our neural networks were tested via the Z3 theorem verifier which is a Satis-

fiability Modulo Theories (SMT) solvers[3], also used in the formal verification of

neural networks. The input is the neural network and constraints to be verified.

Our neural networks successfully passed the given constrains.

25

Chapter 6

Conclusion

With our solution, we could dynamically distribute the load off surrogate servers,

optimizing bandwidth utilization. We also created a new network management

system to utilize ML and different monitoring tools to ensure network quality.

Therefore, we achieved a big step towards a zero touch network.

To be more precise, we focused on the progress of QoS in the mentioned areas.

Most notably, the utilization of ML to increase QoS in areas like bandwidth uti-

lization, strategical content delivery, network resource classification, network cost

optimization, network scaling, and existing ideas of the structure of zero touch

networks. Afterward, we defined our problematic fields related to the QoS in com-

puter networks. We chose the approach of a zero-touch network proposition which

could have the potential to improve the QoS in our chosen area significantly.

‘

26

References

[1] Imran Ashraf et al. “Zero touch networks to realize virtualization: Oppor-

tunities, challenges, and future prospects”. In: IEEE Network 36.6 (2022),

pp. 251–259.

[2] Peter Bakonyi, Tomáš Boros, and Ivan Kotuliak. “Classification Based Load

Balancing in Content Delivery Networks”. In: 2020 43rd International Con-

ference on Telecommunications and Signal Processing (TSP). IEEE. 2020,

pp. 621–626.

[3] Leonardo De Moura and Nikolaj Bjørner. “Z3: An efficient SMT solver”. In:

International conference on Tools and Algorithms for the Construction and

Analysis of Systems. Springer. 2008, pp. 337–340.

[4] David M Gutierrez-Estevez et al. “Artificial intelligence for elastic manage-

ment and orchestration of 5G networks”. In: IEEE Wireless Communications

26.5 (2019), pp. 134–141.

[5] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization.

2019. arXiv: 1711.05101 [cs.LG].

[6] Jon Matias et al. “Toward an SDN-enabled NFV architecture”. In: IEEE Com-

munications Magazine 53.4 (2015), pp. 187–193.

[7] Gang Peng. “CDN: Content distribution network”. In: arXiv preprint cs/0411069

(2004).

27

References

[8] Jihoon Sung et al. “Efficient content replacement in wireless content delivery

network with cooperative caching”. In: 2016 15th IEEE International Confer-

ence on Machine Learning and Applications (ICMLA). IEEE. 2016, pp. 547–

552.

[9] Marcin Zabłocki. Setup apache kafka in Docker on windows. 2017. url: https:

//zablo.net/blog/post/setup-apache-kafka-in-docker-on-windows/.

28

Appendix A

Publications

• P. Bakonyi and I. Kotuliak, "Clustered collaborative c-learning," 2022 IEEE

Zooming Innovation in Consumer Technologies Conference (ZINC), Novi

Sad, Serbia, 2022, pp. 63-66, doi: 10.1109/ZINC55034.2022.9840740.

• P. Bakonyi, M. Vančo, I. Kotuliak (2022) INNOVATIVE DOCKERIZED

WEBSITE BUILDER, ICERI2022 Proceedings, pp. 3013-3016.

• P. Bakonyi, T. Boros and I. Kotuliak, "Classification Based Load Balanc-

ing in Content Delivery Networks," 2020 43rd International Conference on

Telecommunications and Signal Processing (TSP), Milan, Italy, 2020, pp.

621-626, doi: 10.1109/TSP49548.2020.9163470.

29

