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Abstract: 

System logs primarily document significant events and conditions, especially during critical 

periods. These logs are essential for both online monitoring and anomaly detection, as they give 

a detailed picture of a system's status during critical moments. Traditional anomaly detection 

methods often miss new or unexpected behavior patterns. This highlights the need for machine 

learning-based approaches that can better identify such anomalies, making the analyst's job more 

straightforward and automated.  

 

The focus of this dissertation is to study state-of-the-art machine learning methodologies in 

network anomaly detection. The objective was to devise a new methodology that applies 

machine learning techniques for anomaly detection in large web server log datasets. This 

approach takes into account both individual user behavior and the broader traffic patterns. The 

main goal is to effectively use machine learning algorithms for anomaly detection using the 

gathered HTTP log data, with a clear focus on automation and real-world application with 

extensive data inputs. 

Abstract in Slovak Language: 

 

Primárnym účelom systémových logov je zachytiť dôležité udalosti a stavy počas kritických 

momentov, aby pomohli zistiť príčinu systémových útokov, výpadkov či iných anomálií. Tieto 

logy sú dôležité nielen pre online sledovanie, ale aj pre detekciu anomálií, keďže poskytujú 

podrobný pohľad na stav systému počas týchto kľúčových momentov. Klasické metódy na 

detekciu anomálií často nedokážu rozpoznať nové alebo neočakávané vzory správania. To 

zdôrazňuje potrebu metód založených na strojovom učení, ktoré by tieto anomálie dokázali 

lepšie identifikovať, a tým zefektívniť a automatizovať prácu analytikov.  

 

Táto dizertačná práca sa zameriava na štúdium najnovších metodológií strojového učenia v 

oblasti detekcie sieťových anomálií. Cieľom práce bolo navrhnúť novú metodológiu, ktorá 

využíva techniky strojového učenia na detekciu anomálií v rozsiahlych datasetoch logov 

webových serverov. Tento prístup berie do úvahy správanie jednotlivých užívateľov aj celkové 

vzory premávky. Hlavným zámerom je efektívne používať algoritmy strojového učenia na 

detekciu anomálií na základe zhromaždených HTTP logov, s dôrazom na automatizáciu a 

praktickú aplikáciu v reálnych podmienkach s veľkým množstvom dát. 
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Introduction 
 

The amount of harmful network traffic is continually increasing. Automatic data processing and 

intrusion detection systems based on machine-learning algorithms that can detect threats before 

they become noticeable are in high demand. Because understanding each log entry from a 

webserver request requires a high level of ability, and even more so to understand sequences of 

actions like continuous web requests, there is a strong motivation to create systems that can 

detect both known and unknown intrusions. 

The number of anomalies generated by various network misconfigurations continues to rise as 

network traffic grows, resulting in more successful network attacks. To protect the 

confidentiality, availability, and integrity of computer systems, network anomalies must be 

recognized and analyzed; as a result, intrusions consume resources and bandwidth, leaving 

network services unavailable. 

Numerous attackers on the Internet are continually attacking critical computer systems, and 

intrusion detection systems (IDSs) are critical in defending them. Attacks are addressed using 

signature-based techniques, which extract important characteristics and create a unique signature 

for each attack. These methods are extremely successful against previously captured attacks. 

They do not, however, have the ability to detect novel intrusions or zero-day attacks, and they 

are not ideal for real-time anomaly detection across huge datasets (Ni, 2016), (Iwan Syarif, 

2012). 

Network intrusion detection systems (NIDSs) are security systems that monitor harmful 

activities in network traffic and create alerts when suspicious activity is discovered so that the 

cause of the alert can be investigated and action taken. Traditional ways to network anomaly 

detection are becoming ineffective as network attacks become more complex due to 

technological improvements (Monowar H Bhuyan, 2017), (Naveed Chouhan, 2019) 

We can detect if a specific port or service on a specific machine or machines is being connected 

to or transacted with at an abnormal rate using anomaly detection, implying that there is some 

kind of intrusion activity going on where some intruder is attempting to hack into the specific 

system or systems. This is highly useful information for the operations team, who can rapidly 

call in cybersecurity experts to try to figure out what's really going on and take any preventive or 

proactive measures rather than reactivating the system (Adari., 2019) 

Anomaly detection in networks is based on locating data that does not follow predictable 

patterns. Despite the availability of different approaches, there are still a number of research 

challenges. Data contains noise, which is an abnormality in and of itself, making it difficult to 

differentiate. As a result, there is no generally applicable anomaly detection approach. Because 



 

 

intruders are aware of present procedures, there is a lack of publicly available labelled datasets, 

necessitating the development of more complicated and novel approaches. 

Various approaches to anomaly detection have been developed, however most of them have 

drawbacks when utilized in real-world circumstances.  

This research intends to show how machine learning may be used to discover anomalies in a 

variety of application servers that provide modular updates to customers throughout the world, 

with a focus on automation and usability in a real-world context. 

Related work 

 
The main goal of logs is to capture states and significant events at various critical moments to aid 

in system error troubleshooting and root cause analysis. This kind of data is accessible in almost 

all computer systems. Since logs are a significant and valuable resource for understanding the 

system state and performance issues, various system records are good sources of information for 

online monitoring and anomaly detection. 

Researchers Naseer (Naseer, 2018), Malaiya et al. (Malaiya, 2018), and Kim et al. (Kim, 2018) 

investigated the potential of deep neural networks for intrusion and anomaly detection. Naseer 

and his team used various deep neural networks and compared their performance with traditional 

machine learning techniques, achieving an accuracy of up to 89%. Malaiya and colleagues 

focused on empirical evaluation of deep learning, specifically the LSTM Seq2Seq structure, 

which achieved a binary classification accuracy of 99% on two traffic data sets. Kim et al. 

introduced the C-LSTM architecture for anomaly detection in web traffic and showed that it 

surpasses traditional machine learning techniques with an accuracy of 98.6% on a renowned 

dataset. 

Time Series Prediction 

 

In the field of network communication anomaly detection, time series prediction is key. Models 

are trained based on past data to predict future network traffic. In most experiments, a 

combination of LSTM neural network and Discrete Wavelet Transformation was used. 

NLP 

 

In the field of Natural Language Processing (NLP), N-grams are often used to extract features 

from logs. Du et al. (Du, 2017) introduced DeepLog, which uses LSTM networks and surpasses 

traditional N-grams in encoding complex patterns and long-term states. This system, tested on a 

large Amazon EC2 server database, was able to detect anomalies at the log record level and 

showed better performance than other methods. Bertero et al. (Bertero, 2017) approached log 

analysis using NLP tools and word embedding methods based on word2vec, achieving a 90% 

accuracy in detecting stress patterns. Vartouni et al. (Vartouni, 2018) used the n-gram model in 

combination with the SAE method to detect malicious HTTP requests in the CSIC 2010 

database, demonstrating their representative power with vector features of various dimensions. 



 

 

 

 

LSTM 

Torres et al. (Torres, 2017) used LTE probes from the MONROE project to predict future 

network behavior. They tried two approaches: the ARIMAX model and a naive model. The data 

for their experiments came from Lisbon, Portugal. It turned out that the second approach was 

more accurate. Huo et al. (Huo, 2019) created the LTS-TP model for network traffic prediction, 

taking into account periodicity and long-term relationships in the data. They used STL 

decomposition combined with the Seq2Seq model with an enhanced attention mechanism. They 

tested on a public dataset from MAWI and found that LTS-TP is more effective in predictions. 

Radford et al. (Radford, 2018) used the ISCX IDS dataset for network attack detection. They 

applied LSTM RNN and successfully detected abnormal network activity. Casado-Vara et al. 

(Casado-Vara, 2021) developed an architecture for predicting web traffic using LSTM, using 

data from Wikipedia. Their model provided accurate predictions. Zhao et al. (Zhao W. a., 2021) 

proposed a method combining EMD and LSTM for network traffic prediction. They used data 

from a private ISP and achieved good results with the EMD-LSTM method. 

Wavelet Transformation 

 

Wavelet transformation helps identify frequency domain components in time series data, thereby 

increasing the accuracy of predictive models. Shelatkar et al. (Shelatkar, 2020) used DWT on 

Wikipedia data. They divided it into low and high-frequency segments for optimal processing by 

ARIMA and RNN models, leading to improved results. Their methodology integrates ARIMA 

and RNN using DWT. Zhao et al. (Zhao Y. a., 2018), on the other hand, use a wavelet approach 

in combination with various neural networks to detect frequency details of time series, 

surpassing seven basic predictive methods in their experiments on stock price data sets and 

electricity consumption. 

Transformer 

 

The Transformer architecture was introduced by researchers from Google Brain and the 

University of Toronto in the article "Attention is all you need". This architecture bypasses 

recursion to allow parallel processing, utilizing multiple attentions and positional embeddings. 

The Transformer processes sequences as a whole, not sequentially, thanks to the use of self-

attention. This method measures the similarity between items within a sentence. 

Some of the significant features and findings regarding Transformers include: 

1. Improved predictive capabilities, as highlighted by several studies. 

2. Use of the encoder-decoder framework, where the output is generated based on the 

encoded input and previous decoder outputs. 

3. Challenges associated with the Transformer model, such as quadratic time complexity, 

high memory usage, and inherent limitations due to its encoder-decoder design. 



 

 

Xu et al. (Xu, 2021) introduced the Anomaly Transformer, which includes AnomalyAttention 

with a dual-branch structure. This model emphasizes the difference between normal and 

anomalous time points using a minmax method. 

Wu et al. (Wu, 2020) compared the performance of the Transformer with models such as 

ARIMA, LSTM, and Seq2Seq. The Transformer showed superior results, especially in terms of 

the RMSE metric, where it surpassed LSTM and Seq2Seq models using attention mechanisms. 

Zhou et al. (Zhou, 2021) addressed the problem of predicting long sequences (LSTF) by 

introducing the Informer model. Informer overcomes the inherent challenges of the Transformer 

by introducing the ProbSparse self-attention mechanism and generative decoder. Based on 

empirical data, Informer increases predictive capabilities for LSTF. Some of the main challenges 

of the standard Transformer in addressing LSTF include quadratic self-attention computation, 

memory limitations due to layering layers for long inputs, and slower prediction speeds for 

longer outputs. 

In their studies, the authors compared the performance of Informer with various time series 

prediction models using different databases. Informer consistently showed increased predictive 

capacities across all databases, surpassing other neural network models, such as LSTM. 

User Behavior Analysis in the Context of Web Server Logs 

 

In the study, authors Gao et al. (Gao, 2017) analyzed web records from BUPT websites. They 

used data from these records and user activity to develop a user behavior model. They applied 

two methods to detect network threats based on user behavior. Using entropy as an intrinsic 

value of the k-means model, they determined the distance of individual users to the cluster 

center. 

Debnath et al. (Debnath, 2018) introduced LogLens, a real-time log analysis tool using machine 

learning techniques. LogLens identifies anomalies with minimal human interaction and quickly 

responds to changes in system behavior. 

Zhao et al. (Zhao N. a., 2021) compared five commonly used unsupervised learning algorithms 

for log anomaly detection, including statistical models and deep learning-based methods. The 

results showed that while these methods are effective on publicly available datasets, they are not 

consistently effective on real data. In general, deep learning-based methods outperformed 

traditional statistical methods. 

Dataset 

 
The data for this study come from ESET, spol. s r.o., a renowned company specializing in 

cybersecurity. Their software is regularly updated by automatically downloading virus signatures 

and software module updates from the company's servers. The frequency of these updates leads 

to variable and often significant fluctuations in server resource usage. Usage can sometimes be 

predictable, but global time zones, weekends, and holidays bring unpredictable changes in server 

usage. 



 

 

To continuously monitor these changes, the Zabbix monitoring system, which provides real-time 

monitoring, is used, while NGINX records each client connection requesting updates. Specific 

characteristics of these records can be found in Table 1. 

 Attribute Description 

remote_addr Client IP address 

remote_user authentification 

http_x_updateid license key 

time_local local time in the Common Log Format 

http_host HTTP server host 

request_method HTTP request method 

uri Path to the update being requested 

server_protocol Server protocol version 

status response status 

body_bytes_sent request body length 

request_length request length including header and body 

request_time request processing time in seconds with a 

millisecond's resolution 

http_user_agent identification of the client originating the request 

Table 1: Logged attributes. 

In analyzing this dataset, time series methods were used. This included decomposing time-

oriented data into its components: seasonal, trend, and residual. To achieve a stationary signal 

suitable for analysis, trend and seasonality components were removed using differentiation. 

The raw data consisted of logs from one application server captured over 24 hours. These data, 

divided into 1-minute intervals, led to the creation of a dataset with approximately 500,000 

samples. Specific extracted attributes from these logs include various server response codes to 

client requests, aggregated length of each request, the number of requests, and the exact minute 

each request was made. This data extraction process is summarized in Table 2. 

time_local count body_bytes_sent request_length status_200 status_401 ... 

17/Nov/2020:00:00:00 31 195 1 943 783 623 19 372 728 13 499 15 644 ... 

17/Nov/2020:00:10:00 35 491 2 742 201 823 21 980 125 14 939 17 023 ... 

17/Nov/2020:00:02:00 29 505 1 664 891 188 18 589 392 10 698 15 239 ... 

17/Nov/2020:00:03:00 29 321 1 618 338 775 18 494 291 7 496 15 812 ... 

17/Nov/2020:00:04:00 27 740 1 081 497 242 17 820 751 6 362 14 720 ... 

Table 2: Preprocessed dataset sample.. 

Next, these processed data were visualized, as can be seen in Figure 1. However, due to the 

granular nature of the data with a 1-minute interval, selecting traffic samples was complex. For 

clarity, the data were further aggregated by hours, which improved the visibility of trends. 



 

 

 

Figure 1: Daily requests visualised. 

Another data transformation was performed by differentiating the 'count' value, and its 

stationarity was confirmed using the Augmented Dickey-Fuller test. Autocorrelation techniques 

were applied to recognize patterns of repetition in the data. Finally, we attempted to decompose 

the dataset to clarify the trend, seasonal, cyclical, and residual components, although some 

efforts, like identifying trends or residuals, proved unsuccessful. 

Experiments 

 
In our experiments, we tested two models on our dataset. First, we tried the SARIMA model, 

which is a specialized version of the ARIMA model with consideration for seasonality. We used 

85% of the data for training the model and the remaining 15% for testing. The models were 

trained on data grouped by minutes and hours, and their performance was visualized in several 

figures. However, when predicting for the following week, both SARIMA models achieved poor 

results. Even after optimization using the grid search method, we obtained unsatisfactory results, 

with an RMSE value of 33602 being too high for practical use. 

Subsequently, we tried the XGBoost regressor with 1,000 estimators. Its performance was 

significantly better, effectively recognizing characteristic patterns in our data. Despite a 

relatively high error, this model proved to be much better than SARIMA. Moreover, XGBoost 

identified potential deviations in the data. 

 

 

 



 

 

Hypotheses 
 

The following hypotheses emerged from the previous analysis of state-of-the-art techniques, 

analyzed challenges in the field, and characteristics of the collected data. 

1. Enhancing the Predictive Capability of Network Traffic Models for Web Servers in the 

Context of Intrusion Detection. 

In this research, we aim to improve the effectiveness of existing models and develop novel 

methodologies for predicting network traffic patterns on web servers. By harnessing various 

machine learning techniques and integrating them into a unified system, we endeavor to enhance 

the prediction process, thereby enabling more accurate intrusion detection. 

Our primary focus lies in elevating the accuracy of prediction curves, such as those representing 

server load-network curves, over time. This heightened precision empowers us to monitor web 

server characteristics with greater sensitivity. Consequently, we can detect intrusions by 

identifying discrepancies between the prediction curve and the actual network traffic curve. 

Parameters like request volume, request sizes, response statuses, and other relevant metrics are 

integral components of this predictive analysis. The ability to forecast such characteristics is 

analogous to a time series prediction problem. Subsequently, we will conduct experiments to 

assess our system's capability in detecting various types of intrusions, not only at the client-side 

but also encompassing server-side issues, including configuration, hardware, and software errors. 

2. Anomaly Detection in User Behavior within a Web Server Environment for Intrusion 

Detection. 

Our research extends beyond system-level modeling to encompass the behavior of individual 

users within the web server environment. We aim to model user behavior based on their 

interactions with the system, which can lead to the identification of typical user profiles for the 

selected web system. Subsequently, we intend to detect intrusions by identifying anomalies 

within these user profiles, including sudden deviations from established behavior patterns. 

This approach allows us to closely monitor and analyze user behavior, especially when it 

deviates from the norm. If a user's behavior is deemed anomalous, diverging from known user 

groups, we can take precautionary measures such as restricting their access to the system or 

implementing honeypot-like responses. The classification of users into groups can be achieved 

through machine learning methods, both supervised and unsupervised. Given the large volume of 

data involved, unsupervised methods, including clustering algorithms, appear to be the more 

suitable choice. Users can be grouped based on factors such as request timings, request 

frequencies, geographical origins, or specific access patterns. 

 

 

 



 

 

Prediction of Update Curves 

 
In this section, we utilized an LSTM network to predict the update curve and detect anomalies. 

We tested our model on publicly available datasets to demonstrate its effectiveness. The dataset 

for this study contains logs in the format described in Table 1 and are grouped by minutes. The 

goal of using this dataset is to find potential anomalies that could cause problems and allow us to 

quickly resolve them. 

It's important to note that these data were noisy and contained existing anomalies. To address 

this issue, we attempted to gather as much data as possible to reduce the amount of anomalies in 

the overall dataset. We noted that the characteristics of the logs change depending on days and 

weeks. Therefore, it was necessary to properly account for the time attribute in the data. 

The dataset was obtained from several servers from November to February. These servers were 

located in Bratislava and Vienna and provided us with similar update curves and characteristics. 

Our main goal was to predict the number of future requests, so we chose the 'count' attribute as 

our target output. Due to the variability of data over time, we decided not to use standard library 

scalers. 

Network Architecture 

 

A recurrent neural network was chosen to predict future requests of the update server, as the 

update curve is based on historical data. By comparing actual values with expected values from 

the predicted update curve, we were able to assess problems with updates. As seen in Table 3, 

the network architecture was chosen based on related research and the best predictive results in 

our studies, where we compared GRU and LSTM in various configurations. 

Type Units Optimizer Activation 

Loss on train 

set 

Loss on test 

set 

GRU 512 RMSprop sigmoid 0.0040 0.0041 

LSTM 512 RMSprop sigmoid 0.0039 0.0039 

GRU 512 Adam sigmoid 0.0041 0.0042 

LSTM 512 Adam sigmoid 0.0042 0.0043 

GRU 512 RMSprop ReLU 0.0046 0.0047 

LSTM  512 RMSprop ReLU 0.0038 0.0038 

LSTM 256 RMSprop ReLU 0.0054 0.0054 

LSTM 1024 RMSprop ReLU 0.0295 0.0295 

Table 3: LSTM and GRU comparison. 

Update server logs were collected and aggregated to create the input dataset for the LSTM neural 

network model. This model can predict the future update curve using inputs of various lengths 

and is capable of learning and predicting common update patterns of various client software 

modules. The final model chosen for deployment, which performed best in tests, has a 'dense' 

layer, outputs the number of requests, and an LSTM layer with 512 units. The network uses 

ReLU as the activation function and RMSprop and MSE as the error function. 



 

 

The model was trained with early stopping to avoid overfitting. Each input batch had a length of 

1440 (one day). The update curve prediction trained on data from one week from five servers 

had an MSE error of 0.00399 on the training set and an MSE error of 0.0040 on the test set. 

However, as seen in Figure 2, it failed to accurately model the curves. 

 

Figure 2: Prediction on 1 week train data. 

Prediction on two weeks of data had a smaller MSE error of 0.0015 on the training set and the 

same error on the test set but still failed to accurately capture the curves. 

Using fresh data containing 489,600 records collected over three months, the model achieved an 

MSE error of 0.0021 with a Mean Absolute Error (MAE) of 0.0305 on the test set. Predictions 

on a sample of 10,000 training records are shown in Figure 3 and on a sample of 10,000 test 

records in Figure 4. After two weeks of training, the error was larger, but the model was still able 

to achieve update curves, which was key for our upcoming anomaly classification. 

 

Figure 3: Prediction on train data on three months data. 



 

 

 

Figure 4: Prediction on test data on three months data. 

The neural network output was used to identify various anomalies associated with updates. 

These anomalies were identified by comparing the anticipated update curve with the actual 

traffic and distinguishing them according to the following criteria: 

1. Missing update: Anticipated load, usually lasting several hours, is missing. 

2. Unusually large update: Because the load did not decrease, the update was not provided 

within one hour. Customers may not have received everything yet. The load continued 

for several hours. 

3. Unexpected traffic: Client downloads began without our information, signaling heavier 

load. It could be New Year's or the day after holidays, someone might have just launched 

a new update. 

4. Degraded performance: The volume of traffic is much smaller than expected. 

We used a 5-minute window for classification. An increasing trend in the actual update curve, 

but a decreasing trend in the prediction, was used to characterize unexpected traffic. If the 

prediction indicated an increasing trend, but the actual update curve had a decreasing trend, it 

was considered a missing update. If the trends matched, a threshold based on the maximum value 

of the window was used to identify the last two groups. 

Figure 5 shows the actual and expected curves in detail for one day. The system creates three 

alerts at the peak, which is where the selected time point is located. Since the actual curve is 

rising while the predicted curve is not, the curve was originally classified as an unexpected 

update. Then, as the number of actual update values was higher, it was classified as unexpected 

traffic, resulting in the classification of a missing update, because the number of actual update 

values was decreasing while the predictive curve was rising. 



 

 

 

Figure 5: Real vs. one day ahead predicted traffic. 

When creating alerts and real-time classification, we can change two factors: the threshold at 

which we decide to create an alert, or the categorization window. The classifier creates a 

significant number of alerts using a 5-minute window, providing good real-time response time 

with a threshold of 20,000. 

When we increase the threshold value to 30,000, we create all the alerts that we physically see in 

Figure 5. We chose a threshold of 30,000, because increasing it further would prevent us from 

recognizing the first delayed update. 

Results 

 

The system was subjected to evaluation through two key steps. In the first part, we focused on 

the regression problem associated with load prediction. The second part dealt with the 

classification of anomalies based on predicted update curves. 

Prediction Evaluation 

 

The main tool of this phase was the LSTM neural network. Our data is unique as it relies on 

features from HTTP logs. Based on this specification, it was difficult to find comparable 

research. Vinayakumar et al. (Vinayakumar, 2017) reported that the predictive MSE value for 

their LSTM network was approximately 0.042. However, our value reached MSE 0.0025, 

suggesting better performance. We then analyzed several studies focused on similar topics. We 

compared our results with the outcomes of these studies and found that our models performed 

significantly better. 

Further, we used the "Web Server Access Logs" dataset, which contains logs from the Iranian 

website zanbil.ir. Our model was modified to account for data from this dataset. After 

modification and training the model, we achieved an MSE value of 0.0225 on the test sample of 

our dataset and 0.035 on the test set of the Iranian website. 



 

 

Expert Evaluation 

 

The second phase of our system was real-time classification. Due to a lack of labeled data, we 

could not rely on standard evaluation, so we turned to expert analysis. Ing. Matej Březina, a 

specialist from ESET, helped us assess the usefulness of our model. Our model was able to 

identify missing updates and performance drops, which the expert confirmed. The real-time 

classifier generated alerts that matched the expert analysis. 

Conclusion 

 

We proposed a method for identifying and categorizing anomalies in HTTP logs that does not 

require in-depth expert analysis for removing anomalies from data in real time or labeling data, 

which requires professional and systemic knowledge. The effectiveness of the proposed 

detection system based on LSTM was evaluated in a real environment and proved successful in 

identifying various incursions during operation. Using a 5-minute window on predicted and 

actual update curves, we classified anomalies into four groups: Unexpected traffic (the load was 

high and we did not expect an update), unusually large update (we issued an update and the load 

was higher than usual), missing update (the load was low, but we did not expect an update) and 

decreased performance (the issued update led to lower load than usual). 

Compared to existing solutions and expert analysis, the overall findings of the system and the 

performance of the neural network, which achieved an MSE value of 0.0021 on our noisy 

dataset, NRMSE and MSE values were several orders of magnitude better. The usefulness of the 

system was demonstrated by its ability to accurately predict update curves of noisy web server 

traffic even without automatic updates and can respond to events almost immediately, which is 

necessary to counter threats to the system and its infrastructure. An interesting aspect of this 

study is that it does not need a labeled or cleaned dataset and instead detects web server 

intrusions almost in real time using only HTTP logs of the web server. 

In addition to comparing the performance of our model with the performance of other models 

trained on comparable data, we also used the model in a real context to demonstrate its 

applicability and conducted a performance analysis. 

The contribution of this work lies in designing a technique that identifies and categorizes 

anomalies in HTTP logs without the need for deep expert analysis or data labeling, traditionally 

necessary for removing anomalies in real-time data. This innovative method is based on an 

intrusion detection system using LSTM, which proved effective in identifying various types of 

incursions in a real environment. The system accurately classifies anomalies into four groups in a 

5-minute window for both, anticipated and current, update curves. Compared to existing 

solutions and expert analyses, the system demonstrates significantly better results with lower 

MSE values on noisy (real) data, proving its ability to accurately predict update curves and 

quickly respond to potential threats. The system operates effectively without the need for labeled 

or cleaned datasets and almost in real time detects network intrusions using only HTTP logs of 

the web server, highlighting its practical applicability and contribution in real-world scenarios. 

 



 

 

Future Work 

 

We will focus on eliminating thresholds and attempting more precise classification of update 

curve characteristics. For example, if an update appears earlier or later than expected, as shown 

in Figure 5, it may be advantageous to create just one alert by mapping certain combinations of 

alerts into a designated category. We cannot wait until the update curve drops, as the system 

must operate as close to real time as possible, so we will have to create more alerts if an anomaly 

occurs. Although aggregated alerts would be useful for a labeled dataset, the regression problem 

could be replaced by a classification problem. This way, the neural network could replace our 

window-based classifier, as it could classify an anomaly without the need for any further 

processing. 

User Anomaly Detection 

 
The dataset used in this study contains 15GB of compressed web server logs. These logs serve as 

a starting point for identifying potential user anomalies, such as targeted attacks or other 

suspicious behaviors. It is important to note that we do not know how many and what kind of 

anomalies are in the dataset. The goal of the study was to explore the dataset and obtain 

threshold values for attributes. The log format is described in Table 1. 

The original dataset was processed by a parser, generating a list of users identified by their 

hardware identifiers and the time of their update requests. The General Data Protection 

Regulation (GDPR) prohibits the use of IP addresses. We also used the column with HTTP user 

agent information, which contains information about the client's system and language, as well as 

the number of individual HTTP requests, such as GET and HEAD, and server responses. A data 

sample that maps hardware identifier to specific web server access times is in Table 4. This 

dataset contains a table of the total number of user requests over a certain period of time. Each 

attribute name in Table 4 corresponds to a 30-minute interval. For example, attribute '3' 

represents the third 30-minute interval of the day, so the number in this property represents the 

number of requests in the 90th minute of the day. Since a day has 1,440 minutes, this represents 

48 intervals of 30 minutes each. 

Hardware_ 
fingerprint 

get_ 
count 

head_ 
count 

country system status_200 ... status_304 0 ... 47 

XXXXXX...0 3 3 en_us Windows 3 ... 0 0 ... 0.00 

XXXXXX...1 2 2 es_es Windows 0 ... 2 0 ... 0.00 

XXXXXX...2 1 1 pl_pl Windows 1 ... 0 0 ... 2 

XXXXXX...3 5 425 en_us Windows 10 ... 420 0 ... 12 

Table 4: Sample from the dataset (hardware fingerprints were masked due to privacy). 

It is important to emphasize that the dataset is not labeled, as user anomalies have not been 

studied on this dataset, so we do not know which sequences of requests to mark as anomalous. 

Consequently, we use an anomaly detection method that can detect these anomalies without the 

need for extensive expert evaluation and labeling. Looking at the graph of user request behavior 

in Figure 6, we see how diverse the behavior of just 10 random users is, and an expert would 



 

 

need a lot of time to analyze the most anomalous behaviors even in such a small part of the 

dataset. 

 

Figure 6: User request time plot. 

The extracted dataset contains 8,484,251 unique users who made requests to a specific web 

server during one day. 

Proposed Method 

 

The techniques used in this study utilize Isolation Forests, which, unlike conventional 

techniques, are not based on density or distance for anomaly detection, saving time by not 

performing time-consuming calculations. This method had significant success in anomaly 

detection and is ideal for our large datasets obtained from web servers. Unlike clustering, which 

requires a lot of system memory, Isolation Forest can quickly find anomalies in our dataset. 

First, we used DBSCAN to group users into a cluster and then analyzed outliers to identify 

common user behavior. However, this method was computationally inefficient, so we decided to 

use Isolation Forests, which do not attempt to model typical data and are therefore much more 

memory-efficient. 

The two features of anomalous data are the basis of the Isolation Forest method. The amount of 

data as a whole is lower for anomalous data, and the attribute value of normal data differs greatly 

from that of anomalous data. In the training set, data are gradually separated using exclusively 

numerical values until the iTree can distinguish one data group from another. 

Identification of Anomaly Thresholds 

 

To identify threshold values for each property and better understand our data, we used the 

dataset shown in Table 4 for our first anomaly detection. Since data normalization only makes 



 

 

sense when using linear approaches and does not affect the results of the Isolation Forest, we 

decided not to do it. Instead, we wanted to know the exact threshold values for each property, at 

which the model would no longer consider these values normal. We used all 8,484,251 records 

we collected, each representing one user, as well as 57 properties, such as the number of times 

each HTTP method was used, how many times each HTTP code was received, and how many 

update requests were made during all 30-minute daily intervals. 

The "country" and "system" features were not used as input for the model, but rather for better 

understanding of the model. We used a contamination degree of "auto" because we did not know 

how many anomalies might be hidden in our data. For more accurate results, we used 100 

estimators and set the "max features" parameter to the total number of properties. 

Identification of Update Anomalies 

 

We had to slightly modify the original dataset shown in Table 4 to detect unusual user activity. 

We want our model to show whether a certain sequence of requests is unusual or whether the 

ratio of requests created in a certain time window to all requests made by a specific user is 

outside the normal value. 

The Isolation Forest method for this study used 48 properties, 100 estimators, and a 

contamination of 0.05, as we wanted to mark the top 0.5% of data as anomalous for further 

analysis. 

Clustering 

 

Clustering is an effective technique for analyzing large datasets and discovering patterns or 

groups in data. If we apply clustering to the results of the Isolation Forest, it can help in detecting 

and isolating anomalous data points. This method allows us to find and address outliers, which 

are often hidden in extensive datasets. 

Data Point Selection 

 

The performance of clustering depends on the selection of data points. To obtain a representative 

sample of anomalous data points, we first used the Isolation Forest technique to identify the 

1,000 most anomalous users. 

Scaling 

Data needs to be scaled before clustering to avoid dominance of variables with a larger range. 

We used the StandardScaler for scaling data for its efficiency and simplicity. 

Clustering Model 

 

We chose the DBSCAN model for clustering anomalies identified using the Isolation Forest 

model based on our findings and the assumption that clusters will have a similar density. 

DBSCAN 

 



 

 

The behavior of DBSCAN is based on two main parameters - eps and min_pts. The values of 

these parameters affect the number and size of clusters. In our case, we set min_pts to twice the 

number of properties and used the "elbow" method to choose the optimal value of eps. 

Visualization 

 

A scatter plot was used to represent the dataset in Figure 7, where each cluster has a different 

color. The number of HEAD requests is represented on the Y-axis and the number of GET on the 

X-axis. The graph shows that users who sent the most GET and HEAD queries are grouped 

together. 

 

Figure 7: DBSCAN clustering: GET and HEAD count. 

 



 

 

Detailed Analysis 

 

To perform a thorough analysis, we had to reduce dimensionality. For this purpose, we used t-

SNE. After running DBSCAN, we evaluated the results and visualized them using t-SNE and 

Plotly. Clusters created by DBSCAN show a linear pattern in the data, as you can see in Figure 

7, where clusters correspond to a linear function where GET and HEAD requests are 

approximately the same. This may be considered unusual, as in normal online communication, 

GET requests are much more common than HEAD. Many clusters grouped users according to 

their respective countries. 

Clustering of User Request Patterns 

 

We clustered user requests based on the times they were made during the day. Instead of the 

exact number of user requests in a specific time period, we focused on the percentage value of 

his requests in this period. This was to identify unusual request patterns that may be shared by 

multiple users. To identify anomalous clusters, we used the elbow method. After repeatedly 

running DBSCAN with different values of min_pts and eps, we often obtained clusters with one 

or two users. With a value of 2 for the min_pts parameter, 991 points were identified as noise. In 

addition, we tested various values of the eps parameter for DBSCAN. In our case, the "elbow" 

point was at y = 8.5. Using an eps value of 8.5 and a min_pts value of 2, we obtained 978 points 

in cluster 0 and 21 points in cluster -1 (noise). We decided to send these 21 samples for further 

analysis. By clustering anomalous patterns of user requests, we were able to discover common 

patterns among different individuals classified as anomalous. 

Expert Evaluation 

 

To better understand the anomalous clusters discovered in our data, we sought the opinion of an 

expert in the field. The expert's views regarding user requests on the update server are as follows: 

1. Regarding Figure 8, the expert stated: 

"This looks normal, I assume these are users who are getting updates at a typical time. Overall, 

this graph looks healthy and as expected." 



 

 

 

Figure 8: DBSCAN with 3 min_pts for cluster 2. 

2. Regarding Figure 9, the expert stated: 

"User1: Not sure. Maybe an external bot or mirror agent. 

User2: These users may be logging in at a typical frequency, but they don't really benefit 

from it." 

 

Figure 9: DBSCAN with 2 min_pts for cluster 0. 

 



 

 

3. Regarding Figure 10, the expert stated: 

"There is some correlation with update times. It seems that both users increase/decrease at the 

same time." 

 

Figure 10: DBSCAN with 2 min_pts for cluster 1. 

In conclusion, the expert's evaluation suggests that some user actions may be considered typical, 

while others may be unusual, such as the presence of possible external bots. There is a clear 

correlation between user behavior patterns and the times when updates are issued. 

Results and Conclusion 

 

By using the Isolation Forest method on our dataset, we were able to quickly identify anomalies 

among various users that we would normally overlook. We used two methods using Isolation 

Forest and both models were able to identify unique anomalies. The first method looked for 

broader anomalies in the dataset, while the second focused on anomalies in individual user 

behavior. This allowed us to better understand anomalous user behavior. If we want to analyze 

more data over a longer period, we will need to optimize CPU consumption. 

The contribution of this research lies in an innovative approach to detecting anomalies in user 

behavior within a corporate network dataset, utilizing Isolation Forests. This methodology allows 

for accelerated identification of unusual activities, significantly reducing the need for extensive 

expert analysis and complex threshold setting, traditionally necessary for accurate detection. By 

implementing two different but complementary methods, both utilizing Isolation Forests, the 

study identifies not only basic anomalies in the dataset, but also performs detailed examination 

of individual user behaviors in requests, revealing specific anomalous patterns. The contribution 

of the research also provides security experts with an efficient tool for deep understanding and 

familiarization with the unique characteristics of their data and user behaviors. Rapid 



 

 

identification and analysis of anomalous patterns with the proposed approach allows experts to 

gain insight into potential security risks and anomalies, supporting proactive security and 

enhancing their ability to predictively respond to potential threats. 

Future Work 

 

Future work will focus on creating a methodology for quick identification of user anomalies in 

real-time and better understanding of complex user behavior. This will allow us to identify 

patterns and create a labeled dataset for model accuracy evaluation. We can then test the model 

in infrastructure. We will also address the issue of different user time zones and aim to reduce 

CPU consumption of the model. In addition, we plan to conduct a detailed comparative study 

and compare our method with other studies. 

Conclusion 

 
We innovatively approached the prediction of update curves and later focused on automating 

anomaly detection among users with an emphasis on increased network security. The results 

highlight the significance of our techniques in enhancing real-time anomaly detection and 

protecting web servers. 

Prediction of Update Curves 

 

Our method effectively identifies anomalies in HTTP logs, eliminating the need for extensive 

expert analysis. Unlike many studies that are only applicable to specific datasets, our approach 

can be used with any HTTP log dataset. Testing in a real deployment confirmed its effectiveness. 

The contribution of this study lies in introducing a new strategy that allows for identifying and 

categorizing anomalies in HTTP logs, without the need for in-depth analysis by experts or data 

labeling, which are usually required for real-time anomaly detection in data. The introduced 

technique, based on the LSTM system for intrusion detection, proves its effectiveness in 

recognizing various forms of intrusions in a real environment. This system accurately divides 

anomalies into four categories over a 5-minute interval, based on expected and actual update 

curves. Compared with existing solutions and expert analyses, this technique shows superiority, 

achieving lower MSE values on noisy data sets, thereby confirming its ability to accurately 

anticipate update curves and agilely respond to potential threats. It is important to note that the 

system effectively operates without labeled or modified data and identifies network disruptions 

almost in real time, using only HTTP logs of the web server, underscoring its practical 

applicability and contribution in real-world conditions. 

Detection of User Anomalies 

 

Automating the detection of outliers in large datasets provides network security analysts with 

faster responses to threats. The techniques we used accurately identify both general and specific 

anomalies in user behavior, offering a clearer understanding. The t-SNE method further helped 

visualize groups of users based on various attributes. Our analysis focused on user behavior and 



 

 

their interactions with the server, using DBSCAN to identify anomalous patterns of user 

behavior, which are key for timely security interventions. 

This study introduces a new technique that utilizes isolation forests for the rapid identification of 

anomalies in user behavior within a corporate network dataset. This new approach significantly 

reduces the need for intensive expert analysis and the complex process of setting threshold 

values, which are traditionally key for accurate anomaly detection. Through the application of 

two separate, yet complementary methods - both utilizing isolation forests - the research not only 

identifies general anomalies in the data set but also performs a detailed analysis of individual 

user requests and reveals unique anomalous patterns. Moreover, this innovative contribution 

provides security specialists with a practical tool that helps them understand and recognize the 

unique characteristics of their data and user behavior more deeply. With the ability to quickly 

identify and analyze anomalous patterns using the proposed approach, security experts can 

effectively gain insights into potential security risks and anomalies. This, in turn, supports the 

creation of a proactive security environment and enhances their ability to strategically preempt 

potential threats. 

Reflection on Hypotheses 
 

Reflection on Enhancing the Predictive Capability of Network Traffic Models for Web 

Servers in the Context of Intrusion Detection. 

 

Our hypothesis assumed the benefits of improving network traffic predictions for better intrusion 

detection. Our research findings are: 

1. Methodological contribution: We introduced a universal method for anomaly detection in 

HTTP logs, eliminating the need for expert intervention. 

2. Testing in a real environment: The model effectively detected anomalies in a real 

network environment without a labeled dataset. 

3. Utility of intrusion detection system: The LSTM-based system proved its usefulness in 

real-world conditions. 

4. Anomaly classification: Our classification method enhanced understanding of network 

traffic and identified anomalies. 

5. Performance metrics: The model outperformed other existing solutions in comparison. 

6. Feature selection and new methodology: The study used a new approach utilizing only 

HTTP logs for intrusion detection without a pre-cleaned dataset. It used real, noisy data. 

7. Evaluation in a real environment: Collaboration with an antivirus company practically 

confirmed our methodology. 

Overall, our research supports the established hypothesis, presenting an effective solution for 

intrusion detection through understanding web server interactions. 

Reflection on Anomaly Detection in User Behavior within a Web Server Environment for 

Intrusion Detection. 

 



 

 

Our second goal was to explore modeling user behavior for anomaly detection. The hypothesis 

suggested recognizing anomalies through distinctive patterns of user behavior. 

This study provides: 

1. Approach to behavior modeling: Our method created a comprehensive user behavior 

model with a focus on automated anomaly detection. 

2. Anomaly detection through behavioral changes: The techniques used detected anomalies, 

thereby confirming the hypothesis. 

3. Use of machine learning: Our choice of the DBSCAN technique demonstrated the 

advantages of machine learning approaches. 

4. Emphasis on automated network security analysis: Automation in our method allows for 

faster and more proactive responses to security threats. 

5. Data visualization and comprehensive analysis: We expanded the hypothesis using the t-

SNE technique for deeper data analysis. 

6. Broad applicability: The flexibility of our technique confirms its wide applicability. 

By summarizing the methods and conclusions, we confirm our original hypothesis, positioning 

user behavior modeling as a key component of network security. 
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