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Abstract:

Sensitive information is central to many critical sectors, enabling machine learning ap-

proaches to derive valuable insights, yet the distributed and private nature limits its full

utilization. Organizational silos, legal regulations, and the absence of trust between enti-

ties, require privacy-preserving alternatives to direct data sharing. These challenges are

especially pronounced in cybersecurity, where unauthorized data access could expose

critical vulnerabilities and amplify system threats. Therefore, this thesis explores the

application of Privacy Enhancing Technologies to secure collaboration on sensitive data.

The hybrid privacy-preserving learning approach is proposed for distributed network

monitoring. The approach uses Federated Learning for collaborative learning through

the exchange of model weights instead of raw data. To enhance security during aggrega-

tion, Secure Multi-Party Computation is employed, ensuring that shared artifacts remain

protected. The experimental results demonstrate the approach’s feasibility in multiple

data distribution settings, with the resulting models outperforming their single-client

counterparts, validating the effectiveness of collaborative privacy-preserving training.

The proposed solution fills the gap in privacy-preserving collaboration in the cyberse-

curity space, allowing multiple entities secure machine learning collaboration without

compromising data privacy or requiring mutual trust.

Abstract in Slovak Language:

Citlivé informácie sú kľúčové pre mnohé kritické odvetvia, pretože umožňujú stro-

jovému učenie odvodiť cenné poznatky. Avšak ich distribuovaný a dôverný charakter

obmedzuje ich plné využitie. Organizačné bariéry, právne predpisy a nedôvera medzi

subjektami si vyžadujú súkromie chrániace alternatívy priameho zdieľania údajov. Ti-

eto výzvy sú obzvlášť výrazné v kybernetickej bezpečnosti, kde neoprávnený prístup k

údajom môže odhaliť kritické zraniteľnosti a zhoršiť hrozby pre systémy.Preto táto práca

skúma aplikáciu technológií na zlepšenie ochrany súkromia na zabezpečenú spoluprácu

s citlivými údajmi. Navrhuje sa hybridný prístup k ochrane súkromia pri distribuo-

vanom monitorovaní sietí. Tento prístup využíva federatívne učenie na kolaboratívne

učenie výmenou váh modelov namiesto surových údajov. Na zvýšenie bezpečnosti

počas agregácie sa používa zabezpečený výpočet viacerých strán čo zaisťuje ochranu

zdieľaných artefaktov.Experimentálne výsledky dokazujú realizovateľnosť tohto prís-

tupu v rôznych distribučných nastaveniach, pričom výsledné modely prekonávajú mod-

ely trénované jednotlivými klientmi, čo potvrdzuje efektivitu kolaboratívneho učenia

s ochranou súkromia. Navrhované riešenie zaplňuje medzeru v spolupráci s ochra-

nou súkromia v kybernetickej bezpečnosti, umožňujúc viacerým subjektom bezpečnú

spoluprácu v strojovom učení bez ohrozenia dátového súkromia alebo potreby vzájom-

nej dôvery.
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Chapter 1

Introduction

Sensitive data is a fundamental component of operations across industries such as cyber-

security, healthcare, and finance. Machine Learning (ML) serves as a powerful tool for

extracting insights and patterns from sensitive data, enabling more informed decision-

making. However, the decentralized and private nature of sensitive data makes direct

access and centralized learning infeasible. Such circumstances emerge the collaborative

learning trend without compromising data privacy. Developing effective intelligent

solutions requires diverse and consistent data, which is often lacking within individual

organizations. Cross-organizational data sharing can enhance model performance but

is hindered by legal barriers (e.g., GDPR [1], DSA [2], AI Act[3]), organizational silos,

and a lack of trust between entities.

Privacy-Enhancing Technologies (PETs) have emerged to address this challenge, with

approaches such as Federated Learning [4], Secure Multi-Party Computation [5], and

Differential Privacy [6] with high potential in enabling ML on distributed sensitive data.

While many existing approaches focus on individual PETs, their integration remains

a significant challenge. A hybrid approach that ensures both privacy and efficiency is

critical for practical deployment.

This work therefore focuses on developing a hybrid privacy-preserving learning frame-

work for collaborative threat detection across organizations. To achieve this, PETs are

examined and compared based on privacy, performance, and applicability across the

ML lifecycle. Next, the work outlines the hybrid approach’s design and system ar-

chitecture, followed by evaluation in simulated real-world scenarios. The proposed

approach addresses a gap in enabling privacy-preserving collaboration in cybersecurity

and other sensitive domains, providing a practical solution for collaboration between

organizations for mutual benefit without establishing strict mutual trust.
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Chapter 2

Sensitive Data Protection in
Collaborative Machine Learning

Gathering data in one place becomes a more complicated task because of increasing size

together with strict privacy and security regulations. On the other hand, the utilization

of distributed data maintains its demand, encouraging the development of collaborative

learning approaches. Here the FL is discussed as the most prominent and approach for

collaborative learning with inherent privacy-preserving capabilities.

2.1 Federated Learning

Figure 2.1: Federated Learning Architecture

Federated Learning (FL) is a distributed ML approach that allows multiple parties

to collaboratively train a machine learning model while keeping their data private.
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The process of FL training can be outlined as follows: (1) The server provides model

snapshots to the clients, or sometimes clients agree on what model is to be trained. (2)

Each client receives a copy of the model or the weights that define it; (3) The clients

then train the model locally using their data; (4) After training, the clients send the

updated model weights or the changes relative to the initial model back to the server;

(5) The server aggregates all weights based on the chosen aggregation strategy; (6) The

server applies weights to the model, and evaluates the model. Subsequently, the server

distributes the updated model to all clients, and the process repeats from step (2) for a

predetermined number of rounds until model convergence is achieved [7].

Yang et al. [8] categorize FL architectures into two primary types based on data structure:

Horizontal Federated Learning (HFL), applicable when datasets share feature space but

have distinct samples, and Vertical Federated Learning (VFL), employed when datasets

share sample IDs but possess differing feature spaces.

2.2 Privacy Enhancing Technologies

Differential Privacy DP is one of the approaches to preserve privacy using a statistical

data perturbation [6].

Definition 1. A randomized algorithm K with domain D is (ε, δ)-differential private if ∀S ⊆
Range(K) and ∀a, b ∈ D such that ∥a− b∥1 ≤ 1 (a and b are adjacent inputs), if the following
condition is valid.

Pr[K(a) ∈ S] ≤ exp(ε)× Pr[K(b) ∈ S] + δ (2.1)

where K is a randomized algorithm; S is the set of possible outcomes of K; epsilon (ε)
is the maximum distance between K(x) and K(y), then ε ≥ 0 (also referred to as the

privacy budget); delta (δ) is the information leakage probability, then δ ∈ [0, 1]; Pr is

the probability taken over the coin tosses of K.

(ε, δ)-DP ensures that the removal of any individual participant from the dataset does

not significantly alter the output distribution. Conversely, (ε, δ)-DP provides formal

guarantees by limiting information disclosure through constrained data release mech-

anisms, such as calibrated noise addition to query results [9].

Secure Multi-Party Computation Secure Multi-Party Computation (SMPC) is a generic

cryptographic framework that allows multiple parties without mutual trust to collab-

oratively compute a function while keeping their respective inputs private. SMPC can

operate under multiple security models that define the level of robustness against mali-

cious adversary behavior. Here belongs Semi-honest , Malicious, and Covert adversary

models [10].

There multiple techniques through which SMPC can be implemented, including Secret

Sharing (SS) [5], Private Set Intersection (PSI) [11], Threshold Homomorphic Encryp-

tion (THE) [12], Oblivious Transfer (OT) [13], and Zero-Knowledge Proof (ZKP) [14].
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Narrowing the scope to protocols suitable for ML operations, the number of suitable

solutions decreases significantly. SMPC in ML context often considers only a small

number of participants, from 2 to 4.

One of the first protocols that is efficient and suitable for ML is Function Secret Sharing

(FSS) based on splitting and secret sharing of the function, while maintaining the possi-

bility of correct computation is still [15]. ABY 3
is another SMPC protocol for three-party

computation based on arithmetic sharing, Boolean sharing, and Yao’s garbled circuits

that implements semi-honest and malicious security schemes and is suitable for DNN

evaluation [16]. Falcon is a recent Secret Sharing-based SMPC protocol designed for

secure DNN evaluation, optimized for 3-party computation in both malicious and semi-

honest settings. It supports essential DNN operations like linear, convolution, ReLu,

Maxpooling, and batch normalization layers [17].

Figure 2.2: Secret Sharing process under (t, n)-threshold scheme

Secure Aggregation in Federated Learning Federated Aggregation (FA) is the process

of aggregating artifacts received from participants, what are the results of one round

training. Secure Aggregation (SA) is a form of FA focused on protecting the privacy

of individual client updates during global model aggregation. While client updates

does not contain raw data, they remain vulnerable to attacks such as membership

inference [18], reconstruction [19], property inference [20], and model extraction [21].

Most FL approaches address this by applying only aggregated updates to the global

model, preventing direct access to individual client updates during the aggregation

process. One of the first protocols for implementing secure aggregation in the context

of FL is SecAgg. Except for Secret Sharing, the SecAgg protocol utilizes the following

cryptographic primitives: Key Agreement, Authenticated Encryption, Pseudorandom

Generator, Signature Scheme, and Public Key Infrastructure [22].
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Chapter 3

Hybrid Design for Sensitive Data
Protection in Federated Learning

Figure 3.1: Research trajectory from the publications standpoint

Domain analysis highlighted the existence of various approaches to secure and preserve

the privacy of sensitive data within the collaborative machine learning life-cycle. The

conceptual design of the PETs application positions sensitive data at its core. This

central placement reflects the need to consider diverse types of sensitive information,

each representing a potential input for machine learning processes.
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Further sections follow the structure outlined in Figure 3.1. The first publication [A]

examines the current state of the domain and analyzes existing approaches. Follow-

ing the domain analysis, preliminary designs for the PETs application are developed

within a machine learning context (publications [B,C,D]). Considering the preliminary

designs and experiment results, the final approach to collaborative machine learning

(publication [E]) is proposed and discussed in Section 3.2.

3.1 Preliminary Designs Findings

Publication [B] focuses on the assessing the functionality of SMPC usage within col-

laborative ML for medical image classification. It proves that SMPC can be used for the

joint inference. Yet, SMPC comes with the price of increased computation and commu-

nication loads, making the practical usage infeasible. This finding suggests that future

work should explore the capabilities of SMPC protocols in greater depth.

Publication [C] explores the capabilities and efficiency of available SMPC protocols.

The results indicate that while model performance decline is minimal, the computational

load has significant variance depending on the adversary model and the number of

participants. Thus emphasizing the importance of security and efficiency requirements

definition for a specific use case to select appropriate protocol and settings. Another

outcome of the case study is a new perspective for SMPC usage within ML context,

where computation requirements are lower and the privacy of underlying information

matters. This shifts the research perspective towards the Federated Learning, where

only one point of direct sensitive information exposure is present - weights aggregation

of participating clients.

Publication [D] adopts a different approach by exploring Differential Privacy to pre-

serve data privacy during local training while minimizing model performance degra-

dation. Main thought behind is that application DP-enabled local training for federated

learning could provide an alternative to SMPC in protection of shared weights against

unauthorized access or other exposure. The core finding is the existence of a relation-

ship between regular and privacy parameters. Specifically, DP parameters influence the

final model performance, but it is possible to achieve non-private model metrics through

tuning mechanisms. In the Federated Learning (FL) context, this showcases the ability

of DP to protect shared weights, without compromising the model’s performance.

The findings outlined reveal two key circumstances:

• First, while SMPC represents a viable option for ML inference, its current imple-

mentations remain impractical for real-world applications due to computational

intensity, pushing us toward less demanding use cases within the collaborative

ML lifecycle.

6



• Second, differential privacy (DP) demonstrates comparable performance to non-

private counterparts, though achieving this requires problem-specific optimiza-

tion.

These case studies formulate preliminary designs phase and establish the context for

the subsequent chapter.

3.2 Secure Federated Learning for Multi-Party Network Moni-
toring

This section introduces the design of a collaborative and privacy-preserving machine

learning system, as presented in publication [E] of the research trajectory in Fig-

ure 3.1.

Modern network security relies on continuous monitoring through SOCs using IDS/IPS

and behavioral analysis (NBA), requiring adaptive approaches for evolving threats. Ma-

chine learning enables predictive threat detection, but data limitations and privacy regu-

lations like GDPR restrict model training. This work explores Federated Learning with

secure multi-party computation (SMPC) to enable collaborative, privacy-preserving

threat detection across distributed SOCs—balancing improved threat coverage against

increased computational costs and privacy risks from multi-party participation.

The core motivation of this section is assessing the multi-party system behavior in the

model-sharing training process, where the dynamic workload modeling is conducted

in a secure and privacy-preserving manner among distributed and collaborated SOCs.

To achieve this, our scope is to cooperate the Federated Learning (FL) concept and time-

series prediction using DL techniques, along with the secure aggregation by means of

secret sharing in FL. Concretely, SMPC in federated network monitoring, where more

parties train the shared model over private data without being exposed to potential data

privacy and data security threats.

3.2.1 Conceptualization of Secure FL for Network Monitoring

The high-level architecture of FL is visualized in Figure 3.2, which contains N clients

and an orchestrating server server. The essential unit of FL training is round, which

represents a sequence of next steps:

1. Each client trains model locally, usually for one epoch;

2. Each client sends model weights to the server;

3. Server aggregates weights from all clients;

4. Each client receives the update and starts a new cycle;

Each of these steps, represents a set of challenges. However, the most challenging step

is step three, which requires an optimal approach to aggregate weights that would

7



Figure 3.2: Conceptualization of Federated Network Monitoring System

consider the amount and distribution of data on each client, possible dropout clients,

and other possible issues.

The federated network monitoring process is divided into several stages as follows.

• Stage 1 – data collection and data preparation, where all data of network activity

have been collected and processed [23] to be more suitable for time series modeling.

• Stage 2 – design and creation of the DL model [24].

• Stage 3 – includes setting up the baseline experiments and model architecture

optimization. After that, the best model is trained on different data partitions

with subsequent evaluations.

• Stage 4 – establishes the FL process and training on the initial number of clients

on all data partitions.

• Stage 5 – adds secure weight aggregation on the central server to the settings in

the previous part.

• Stage 6 – collects metrics such as model performance metrics, prediction results,

convergence rates, and computational loads are collected, compared, and evalu-

ated appropriately.

8



3.2.2 System Architecture

Figure 3.3: Federated System Architecture for Federated Network Monitoring

The system design is built based on the FL approach (Section 2.1) and visualized in

Figure 3.2. Each client possesses a similar set of components which can be modified

according to the chosen aggregation approach. For example, the implementation of

Secure Aggregation requires additional modules on the client and server sides. In this

section, the system components and their inter-relationships are discussed.

In a standard and non-secure setting, the client’s component set comprises Data Pro-

cessing, Data Storage, Configuration Module, Federation Modules, which contains sub-

modules Model Training, Model Evaluation, and Communication.

In Secure Aggregation, additional components like Pseudo-Random Generator (PRG),

Secret Sharing Module, and Encryption modules are added. The server architecture

mirrors the client-side structure but incorporates three distinct core modules - Weight

Aggregation, Validation Data Processing and Storage, and Model Validation - with

adapted recurring modules to handle orchestration tasks, while supporting both hori-

zontal and vertical federated learning data partition approaches.

9



3.2.3 Federated Process

The joint ML model training process in this work follows the standard methodology

in the FL domain. The central server coordinates the exchange of information and

oversees the aggregation of model weights, while each client trains their respective

models independently on local systems.

We consider common prerequisites such as the existence of the Server and Set of Client

Nodes with the ability to communicate in a secure manner. Each of the clients holds its

own data that can be split into the training and evaluation subsets, and is responsible

to train its own model. At the same time, the Server needs to have access to similar

data to validate the aggregated model results. The model architecture is consistent

across all participants, a necessary requirement for ensuring the compatibility of output

dimensions and facilitating effective aggregation.

Another critical aspect of the system in the research setting is its flexibility in simulating

and supporting different data partition types, including IID, NonIID, and Vertical par-

titions. In practice, this means that each participant must be able to adapt the dataset,

based on the partition type PT defined in the Config Module.

• Train function represents a regular model training cycle on each client premises.

The implementation can depend on a particular use-case, but in our case the

training cycle is identical across all clients. That is, the parameters like learning

rate, batch size, and number of epochs have identical values.

• Evaluate function measures the performance of the model on the testing dataset

on each client. It uses common evaluation functions such as MSE and MAE of the

locally trained model. These metrics, together with the model weight, are being

sent to the server.

• Aggregate function encapsulates the process of combining the model weights. In

our approach, regular and secure aggregation can be used. That is, FedAvg is

used for regular aggregation and SecAgg+ for secure aggregation. The output

of this process are aggregated model weights that contain features learned from

each client.

• Validate function is analogous to Evaluate, except that it operates on a model

based on aggregated weights. Additionally, it validates the combined model on

the Servers’ validation set.

Currently, the system is designed to execute a FL process with a single set of settings at

a time. Consequently, to facilitate future evaluation and comparison, the model and its

corresponding convergence history must be stored on the Server.

10



Chapter 4

Enhancing Privacy in Federated
Learning: Method Assessment and
Evaluation

This section discusses the application of Federated Learning for secure network moni-

toring by investigating its use in various data partitioning settings to train Deep Learn-

ing models across multiple data partitions, incorporating secure aggregation to enhance

data privacy. We conduct experiments in two categories - FL with regular and secure se-

cure aggregations - evaluating each across three data partition types: Non-Independent

and Identically Distributed (NonIID), Independent and Identically Distributed (IID) and

Vertical.

This setup allows to evaluate the impact of different data partitioning and aggregation

methods on the final model’s performance in the network monitoring setting. Moreover,

we measure the computation time of our approach to assess the feasibility and general

performance implications of FL across the partition types. This allows us to evaluate

the impact of secure aggregation during the entire execution process.

4.1 Federated Learning with Regular Aggregation

The results of FL with regular aggregation evaluation on different data partitions is

discussed. For horizontal partitions (IID and NonIID), the FL process involves three

clients, whereas vertical partitions is limited to two participants.

The total FL process time for both partition types takes 193 seconds. Average time

elapsed for each round is 18 seconds, except for the first and second, which take 24.5 and

21.4 seconds, respectively. The increased time of the first and second rounds is caused

by the initialization and setup of the federated process, which requires exchanging

the initial parameters and metadata with each client. Since both FL processes use the

11



Figure 4.1: Predictions of the models trained on NonIID and IID data distributions. The

horizontal axis represents the sample timestamps, and vertical axis - real and predicted

activity level values for each protocol.

Figure 4.2: Total time in seconds elapsed for different FL settings

same setting and partition size, the equality of total and per-round elapsed time is

expected.

4.2 Federated Learning with Secure Aggregation

This section details FL experiments using the SecAgg+ protocol to securely aggregate

weights and preserve privacy. Similarly to the previous section, two Horizontal and

12



Vertical partitions are evaluated. The general settings for data partitioning, model, and

federate learning remain unchanged from Section 4.1.

Horizontal Partitions The convergence of the model indicates that the secure aggre-

gation reaches an acceptable MSE of 0.002324 for NonIID and 0.002941 for IID partitions,

which is comparable to the regular approach. For secure NonIID, this represents the

1.13% increase from its regular counterpart, and for secure IID – 12.08% increase. Other

metrics in the Tab. ?? have the same tendency to be 1% to 10% worse in the secure

compared to regular. Similarly, per-round metrics are 1% - 10% percent higher across

all rounds for secure NonIID in comparison to the regular NonIID model. The same

applies to IID models, where an increase is observed between 2% and 12%. However,

the model with secure aggregation converges more gradually than the regular models.

The secure IID setting shows instability on the client models at the beginning of the FL

process, although all client models were able to converge to the optimal MSE values at

the end.

(a) Regular NonIID vs Secure NonIID (b) Regular IID vs Secure IID

Figure 4.3: Predictions of the models trained on the horizontal distributions, with and

without Secure Aggregation.

The prediction of regular and secure horizontal models is shown in Figures 4.3a and

4.3b. Comparison of actual and predicted values of the http_count_uid_in attribute

using the cosine metric yields the 0.89 similarity for the secure NonIID model and the

0.90 for the regular NonIID model, which is 1% decrease in prediction accuracy. For the

ssl_count_uid_in attribute, the predictions of the secure model capture the overall net-

work load trend but struggle with data variability, leading to a 7.47% higher prediction

value compared to the regular model, while both models achieve a cosine similarity

of 0.97, confirming the closeness of their predictions. Experimental results indicate

modest but consistent performance degradation when employing secure aggregation

relative to standard federated learning.

13



The predictions of the secure IID model closely resemble those of the regular IID model

for both features. Specifically, cosine similarity to actual values for http_count_uid_in
attribute is 0.84 for the secure model and 0.86 for the regular model, which indicates a de-

crease of 2.32%, but confirms the usability of the secure model. For the ssl_count_uid_in
attribute, both models perform similarly and have the 0.97 value of the cosine metric,

which is considered a negligible impact of secure aggregation on the overall perfor-

mance of the model.

The total time elapsed for FL training with secure aggregation is 290.55 seconds on

NonIID partitions and 299.52 seconds on IID partitions, reflecting increases of 54.56%
and 49.93%, respectively, compared to regular aggregation. The visual time comparison

is shown in Figure 4.2. The time elapsed in each round on average is 50.25 − 55.24%
higher than in regular models. Similarly, the first and second rounds take longer due to

the initialization and setup of the federated process.

Figure 4.4: Time elapsed for each round for different FL settings

14



Vertical Partitions Model’s convergence has more noticeable differences between reg-

ular and secure aggregation methods compared to horizontal partitions. Here, secure

aggregation shows a higher loss in rounds 2, 3, 8, and the final round 10, but a lower

loss in the remaining rounds, while maintaining a convergence gradient similar to the

regular model. The average difference between secure and regular aggregation losses is

in the range of 0.3−30.02% with the final loss 37.53% higher in secure aggregation. The

final MSE metrics is 0.000709 for http_count_uid_in and 0.000709 for ssl_count_uid_in.

Both clients follow a similar convergence pattern, reaching acceptable MSE values (0.022
and 0.019) in the third round and maintaining comparable results throughout the FL

process.

The predictions, visualized in Figure 4.5, show the general similarity in model behavior

between the regular and secure models. The secure model is capable of predicting the

http_count_uid_in attribute with the same accuracy as the regular on, with a deviation

up to 20% in certain sections. The cosine metric for the secure model is 0.97, while for

the regular model is 0.98, which is only 1% percent decrease. However, the predictions

for the ssl_count_uid_in attribute look less promising, where the secure model is unable

to fit the minimum and maximum bounds of the initial sequence. Figure 4.5 clearly

visualizes the difference, although the percentage difference is in the range 4.8− 5.2%.

The cosine metric for ssl_count_uid_in shows 0.99 for both secure and regular models,

which confirms the models’ ability to learn properly with secure aggregation.

Figure 4.5: Predictions of the models on the vertical data distribution with and without

Secure Aggregation.
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In the context of time, the complete secure FL process takes 438.87 seconds, representing

a 22.81% increase compared to the regular process. The visual comparison of the elapsed

time is shown in Figure 4.2. The longest round took 48.69 seconds, and the other rounds

averaged at 43.35 seconds per round. The round-wise times results represent an increase

21.65% compared to the regular vertical FL.

4.3 Summary

The proposed approach operates in the cybersecurity domain, where multiple clients

collect network monitoring information and collaboratively train model for proactive

network activity monitoring. Core building blocks are Federated Learning, privacy-

preserving by design collaborative learning approach, and Secure Multi-Party Compu-

tation, which enhances the privacy by securing the aggregation process and prevents

unwanted access to shared artifacts. System was evaluated in different data partitioning

settings to simulate real-world usage, and in all settings, the system produced the model

that significantly outperforms the one trained on a single client.

Achieved results demonstrate the feasibility and advantages of the FL-based system

in learning from information without direct access while preserving the privacy of ar-

tifacts, such as raw data and model weights. The system demonstrates adaptability

across diverse problem domains and data partitioning configurations, thereby improv-

ing its generalizability and practical applicability. This inherent flexibility is critical for

real-world deployments, which frequently encounter heterogeneous data distributions

and varying computational constraints, necessitating adaptable and scalable machine

learning solutions.
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Chapter 5

Conclusion

Sensitive data are an inseparable part of every modern-world operation, while machine

learning allows learning from them. Accessing siloed data is problematic due to its

nature, hindering the model improvements and making collaboration between several

entities impossible. Through case studies and preliminary research, the thesis focused

on Secure Multi-Party Computation, Federated Learning, and Differential Privacy as the

most prominent and balanced approaches to securing data in machine learning.

Hybrid approach is based on Federated Learning, inherently avoiding a direct sharing of

sensitive information among collaborating entities, while still enabling all participants

to benefit from the collective dataset. Secure Multi-Party Computation is integrated

for secure weight aggregation. These ensure the impossibility of data exposure during

intermediate steps to participating parties or the coordinating server. Importantly,

secure aggregation introduces only moderate computational overhead at an acceptable

level, making it practical for real-world deployments when combined with optimization

strategies. The proposed solution has proven its ability to successfully accommodate

multiple data partitioning settings with a global model that exceeds single-client training

in all metrics.

The works main contributions can be summarized as follows:

• Multiple strategies for preserving the privacy of artifacts in the collaborative ma-

chine learning process are explored, including Differential Privacy, Secure Multi-

Party Computation for model training, and secure aggregation techniques.

• A secure federated learning approach for collaborative network monitoring is

proposed, enabling joint model training without requiring full mutual trust while

preserving the privacy of participants’ data.

• Proposed approach proved its practical applicability in real-world condition by

being able to accommodate different data partitions and introducing computation

overhead at acceptable level.
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