
Slovak University of Technology in Bratislava

Faculty of Informatics and Information Technologies

Ing. Jakub Perdek

Dissertation Thesis Abstract

Aspect Oriented Knowledge-Driven Evolution of
Software Product Lines With

Hierarchically-Expressed Variability Information
Preserved in Code

to obtain the academic title of Philosophiae doctor (PhD.)

Study Program: Applied Informatics
Field of Study: Computer Science
Place of development: Institute of Informatics, Information Systems

and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava

Bratislava, July 2025

Dissertation Thesis has been developed at the Institute of Informatics, Information Systems
and Software Engineering, Faculty of Informatics and Information Technologies, Slovak
University of Technology in Bratislava.

Submitter: Ing. Jakub Perdek
Institute of Informatics, Information Systems
and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava

Supervisor: Doc. Ing. Ján Lang, PhD.
Institute of Informatics, Information Systems
and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava

Former Supervisor Prof. Ing. Valentino Vranić, PhD.
and Consultant: Faculty of Informatics

Pan-European University, Bratislava, Slovakia

Oponents: doc. Dr. Miloš Dobrojević
Faculty of Informatics and Computing
Sinergija University, Republika Srbská, Bosna a Hercegovina

doc. Ing. Csaba Szabó, PhD.
Faculty of Electrical Engineering and Informatics
University of Technology in Košice, Slovakia

Dissertation Thesis Abstract was sent:
Dissertation Thesis Defence will be held on at pm at the Institute of
Computer Engineering and Applied Informatics, Faculty of Informatics and Information
Technologies, Slovak University of Technology in Bratislava (Ilkovicova 2, Bratislava).

Prof. Ing. Ivan Kotuliak, PhD.
Dean of FIIT STU in Bratislava

ANNOTATION
Slovak University of Technology Bratislava
Faculty of Informatics and Information Technologies

Author: Ing. Jakub Perdek
Supervisor: Doc. Ing. Ján Lang, PhD.
Former Supervisor and
Consultant:

Prof. Ing. Valentino Vranić, PhD.

Degree Course: Applied informatics
Title: Aspect Oriented Knowledge-Driven Evolution of Software

Product Lines With Hierarchically-Expressed Variability
Information Preserved in Code

July 2025

Variability handling and reuse are methodologically and practically managed in software
product lines. In accordance with their taxonomy, the annotation-based type preserves the
annotations of variability in code while ensuring the establishment of highly configurable
systems out of its features. Despite the benefits of annotation-based software product lines,
in-code variability management is not adjusted to concisely preserve hierarchical informa-
tion in the code in a lightweight, minimalistic, and fully automated manner. Specifically,
annotations are left without a selection procedure based on in-code complexity, policy en-
forcement, naming conventions, managing domain knowledge, and criteria for maintaining
feature models directly in the code. Consequently, we introduce a methodology for the
establishment of a software product line in a lightweight fashion, a framework with com-
peting strategies based on in-code complexities concerning the context of the entire code
fragment to select the annotation with the lowest complexity, a scalable solution infras-
tructure by fast matrix-based methods for graph matching and clustering, and finally most
of them entirely integrated into fully automated and minimalistic variability management.
Additionally, the methodology is verified on established software product lines prepared
in accordance with the variability managed in the code, but primarily on the minimalistic
and fully automated version for managing fractals driven by structural information towards
its semantic extensions. Through minimalistic fully automated evolution, we achieved the
ability to handle variability from the early beginning while reaching reuse, massive pro-
duction, and discovering domain knowledge. Our methodology provides new perspectives
to solve existing challenges with diverse artifacts, including the simulation of feature in-
teractions owing to automated scenario generation from software product line evolution
or decision-making with a custom-designed model while incorporating new features. A
notable contribution of our work lies in elaborating the methodology of preserving feature
models in code, with its verification in automated minimalistic evolution.

ANOTÁCIA
Slovenská technická univerzita v Bratislave
Fakulta informatiky a informačných technológií

Autor: Ing. Jakub Perdek
Školiteľ: Doc. Ing. Ján Lang, PhD.
Predchádzajúci Školiteľ
a Konzultant:

Prof. Ing. Valentino Vranić, PhD.

Študijný program: Aplikovaná Informatika
Názov Práce: Evolúcia Radov Softvérových Výrobkov s Variabilitou v

Kóde Nízkotonážnym a Automatizovaným Spôsobom
Júl 2025

Správa variability spolu so znovupoužitím je metodologicky a prakticky riadená v rámci
existujúcich radov softvérových výrobkov. Jeden zo spôsobov realizácie podľa taxonómie
predstavuje použitie anotácií pri zavádzaní vysoko konfigurovateľných systémov z dos-
tupných vlastností. Napriek známym výhodám, manažovanie variability v kóde nie je
prispôsobené pre prehľadné a zrozumiteľné udržovanie hierarchickej informácie v kóde. To
môže byť naviac dosiahnuté jednoduchým, minimalistickým, a plne automatizovaným spô-
sobom. Napríklad existujúce prístupy neumožňujú porovnať rôzne druhy anotácií a výra-
zov na základe zložitosti v kóde, vynútiť pravidlá v kóde, použiť menné politiky, spravovať
doménové znalosti, a nie sú identifikované kritériá pre flexibilné udržiavanie modelov vlast-
ností v kóde. Predstavujeme preto metodológiu umožňujúcu zavedenie radu softvérových
výrobkov odľahčeným, nenáročným spôsobom, rámec implementujúci stratégie pre určenie
druhu anotácie pre správu variability s najnižšou zložitosťou určenou zo zdrojového kódu
a jeho kontextu, škálovateľnú infraštruktúru zabezpečenú integráciou rýchlych grafovo-
orientovaných metód pre zhodu a hierarchické zhlukovanie uzlov, a kompletnú integráciu
vymenovaných metodológií do plne automatizovanej a minimalistickej správy variability.
Predstavená metodológia je overená na navrhnutých a zhotovených radoch softvérových
výrobkov s cieľom spravovať variabilitu v kóde, primárne na minimalistickej a plne au-
tomatizovanej verzii aplikovanej na evolúciu fraktálov pri ktorej každé rozšírené fraktálu je
riadené podľa štruktúrnych indikátorov a rozšíriteľné smerom ku sémantickým. Prostred-
níctvom minimalistickej plne automatizovanej evolúcie sme už od skorých počiatkov vývoja
zabezpečili správu variability za súčasného znovupoužitia, masívnej produkcie, a objavo-
vania doménových znalostí (pri iteratívnej integrácii nových vlastností). Naša metodoló-
gia poskytuje perspektívy pre riešenie existujúcich výziev použitím rôznorodých artefak-
tov, napríklad pri simulácii interakcií vlastností vďaka automatizovanému generovaniu
scenárov získaných z evolúcie radov softvérových výrobkov alebo rozhodovania pri zapra-
covaní nových vlastností vďaka navrhnutiu špecifického rozhodovacieho modelu. Perspek-
tívny prínos našej práce pozostáva z vypracovania metodológie pre udržiavanie modelov
vlastností v zdrojovom kóde spolu s verifikáciou jeho spôsobilostí v rámci plne automat-
ickej minimalistickej evolúcie.

Table of Contents

1 Introduction 1
1.1 Thesis Statement . 1
1.2 Contributions . 2

2 Handling Variability in Software Product Lines 3
2.1 Implementing Variability in Code: Annotative Approaches 3
2.2 Implementing Variability in Code: Compositional Approaches 4
2.3 Aspects in Products as a Limiting Factor 5

3 Methodology for Lightweight and Automated Evolution of In-Code Vari-
ability Supported by Frameworks 6
3.1 Annotation-Based Software Product Lines 6

3.1.1 Software Product Line for Canvas-Based Applications 7
3.1.2 Families of Fractal Products as a Source of Variability 7

3.2 Lightweight Aspect-Oriented Software Product Lines with Automated Prod-
uct Derivation . 7

3.3 Aspect-Oriented Software Product Lines with No Aspects in Products . . . 9
3.4 Complexity of In-Code Variability: Emergence of Detachable Decorators . . 10
3.5 Matrix Based Approach to Structural and Semantic Analysis for Software

Product Line Evolution . 11
3.6 Fully Automated Software Product Line Evolution with Diverse Artifacts . 12

4 Results 14
4.1 Clarifying Lightweight Nature . 16
4.2 Universal In-Code Variability Handling: High Level Synergy of Methodolog-

ical Contributions . 17

5 Conclusions 20

Bibliography 20

Appendices 24

A Publications 25
A.1 Articles in International Scientific Journals 25
A.2 Articles in Proceedings of International Scientific Conferences 25
A.3 Presentations at International Scientific Conferences 26
A.4 Articles in Preparation . 26

1. | Introduction

Software product lines increase the effectiveness of product delivery by reusing common
assets, including software artifacts, architectural decisions, written tests, and others. The
principle of their success lies in the reuse efficiency, which is achieved by not repeating the
analysis stage for developing each product but applying domain knowledge instead. Reuse
is ensured in both phases—domain and application engineering [12]. Generalization and
decomposition are applied in the first phase to create generators and reusable components
while covering as much variation as possible. The focus is on applying domain knowledge
to separate what is common from what is variable. The second phase transforms generated
artifacts and developed components from the first phase into final products and continues
with their customization [12].

Variability handling is the primary concern in software product lines based on deter-
mining what is common and variable in terms of features. Features are in literature defined
as user-visible aspects, qualities, or characteristics of a software system [11], and as logical
units of behavior given by the set of requirements elsewhere [5], are identified and realized
later in the first domain engineering phase. Common and varying requirements as repre-
sentatives of problem space are transformed into reusable components in solution space in
a process called derivation (of a software product) [13].

Reliance on expert knowledge, primarily associated with variability handling in software
product lines, is crucial and leads to the emergence of various challenges. The majority of
solutions neglect knowledge modeling and simulation of interactions between features [9,
20]. Opportunities to handle defects and provide quality assurance are missed or do not
rely on the knowledge within the software family. Similarly, documented are problems with
comprehending interactions between variants [37] caused by the rapid increase of mutual
relations and dependencies with new features. Similarly, variability handling is not fully
covered in general primarily because it does not get beyond software product lines [20].

1.1 Thesis Statement

In annotation-based software product lines, variability is directly expressed in code us-
ing annotations. Such a code is difficult to understand, neglecting the benefits of having
variability directly managed in code. A particular problem is that variability handling
constructs are mixed with business logic. The effects of how we comprehend variability
in code are unrecognized, leaving no opportunity for additional improvements, even in the
case of implications for automated evolution. Constraints and variable configurations must
be known to incorporate this change manually. When the enumeration of constraints or
incorporation of domain knowledge is directly preserved in the code, automated updates
are simplified from one place. Specifically, no additional language is necessary to select and
quantify the affected locations in the code, as it is in aspect-oriented programming. Pre-
serving additional information has the ability to enforce policies in a particular place in the
code, but it also increases complexity and loses the benefit of preserving such information
independently. Furthermore, current approaches to developing annotation-based software
product lines do not support the expression of the hierarchical structure of variability,

Section 1.2 2

which is its inherent property.
Additionally, annotations such as tags in frame technology can still be affected from

outside using aspect-oriented programming. Consequently, the simplicity of the managed
variability can then be enriched with highly complex constructs affecting code while bene-
fiting from reuse. Reuse is achieved primarily by non-invasive integration of concerns and
separation of composition rules as part of handled variability. Reusing existing function-
ality is a step to be applied to oneself in a recursive manner or to handle specific cases.

To a large extent, features in product lines come from the domain knowledge. Extensive
software product lines involve a large number of features with complex variability relations
between them. Handling this manually is difficult and error-prone in general, and even
more so if this has to happen directly in code as in annotation-based software product
lines. Subsequently after handling variability on low code level in parallel with extract-
ing appropriate knowledge from this step, the aspect-oriented nature supported with this
knowledge would less incline to break modularization of resulting solution.

Taking all this into account, the following thesis can be stated:

Evolving software product lines would benefit from in-code separation of vari-
ability from business logic, preserving the hierarchical structure of variability
in the source code, and automating the derivation of features from the domain
knowledge and handling the variability relations between them.

1.2 Contributions

This thesis brings the following contributions that support the thesis statement:

• Approach to fully automated software product line evolution with diverse
artifacts supported by a framework and tools (Chapter 3.6).

• Study of the complexity of in-code variability (Chapter 3.4).

• Establishing annotation-based software product lines as in-code variability
observables of different complexity, size, and organization (Chapter 3.1).

• Matrix based approach to structural and semantic analysis supporting
software product line evolution (Chapter 3.5).

• Approach to developing aspect-oriented software product lines with no
aspects in products (Chapter 3.3).

• Approach to developing lightweight aspect-oriented software product lines
with automated product derivation (Chapter 3.2).

2. | Handling Variability in
Software Product Lines

Software product lines increase the effectiveness of product delivery by reusing existing as-
sets, including code fragments, tests, and software artifacts. Handling variability represents
the primary concern in software product lines. The primary consequence of introduced vari-
ability is getting beyond the single system development. Increased complexity has to be
handled with respect to user requirements [34], interconnections between software compo-
nents [1], and ensure as much reuse as possible. Consequently, variability handling has to
be managed using different approaches, differentiating with the used technologies [16].

Variability management is necessary to select and integrate these assets as the main
component of a software product line. The most commonly used implementation at the
code level in the area of software product lines is conditional compilation [17]. Alterna-
tively, a more comprehensive configuration and independence from the used programming
language can be achieved with frame technology; specifically, marks/tags are used inside
the source code, which becomes a template [30].

2.1 Implementing Variability in Code: Annotative Approaches

One of the first and largest software product lines are operating systems based on Linux
kernel [24], where the problem with variability handling has emerged from the need to
manage more than 12,000 features [42] across large 30 million lines of code from Linux
operating system and its variants [29]. Already implemented features must be adapted to
resolve conflicts with introduced functionality directly in code as part of software devel-
opment. Conditional compilation based on C-preprocessor directives suits this purpose.
Owing to this technology capable of including or excluding particular code fragments, many
open-source [4] and industrial software product lines [48, 22] document high configurabil-
ity [24]. Some of its known variants [4] are based on Linux kernel comprising FreeBSD [19],
Fiasco [47], eCos [44], µClinux, and uClibc.

In the Linux kernel, its numerous components are reconfigured using even graphical
user interfaces [4] into kernel images, which are perceived as final products to make them
operate in respective scenarios demanding adaptations for specific platforms, subsystems,
or even to take into account device drivers [6]. Despite the similarity with software product
lines manifesting in the abovementioned high-configurability along with automated product
generation, code reusability, no unrequested features, etc., no guidelines for product line
scoping, feature modeling, development of core assets, etc. are applied in the development
of Linux kernel [40]. These problems complicate perceiving them as software product lines.

Analyzing variability requires information about numerous features of these large sys-
tems. This information is preserved in variability models created using kind of variability
model languages or even domain-specific languages [3], namely Kconfig [38] and Component
Definition Language (CDL) [4]. These models—as well as similar feature models—belong
to variability models. FreeBSD differentiates with the features organized in the list instead
of in the hierarchical feature model known from other Linux kernels [39]. Additionally,

Section 2.2 4

FreeBSD counts only over 5000 features, which are more than doubled for eCos and Linux
kernel according to the paper on reverse engineering of feature models from 2014 [39].

2.2 Implementing Variability in Code: Compositional Ap-
proaches

A complementary way of implementing variability in code to previously characterized an-
notative approaches lies in compositional approaches [15]. Aspect-oriented programming
helps decompose features, enabling the capability to evolve features independently [37].
Plug-and-play adaptations of base behavior are ensured through the composition mecha-
nism.

Figure 2.1: Modularization and composition of use cases (example adapted ac-
cording to Michalco et al. [45])

Figure 2.2: Resolving conflicts in use case modularization (ex-
ample adapted according to Michalco et al. [45])
Feature-oriented approaches can modularize a feature into a single unit and abstract

it from its application to the base definition of a particular variant. These abstracted
deltas (such as calculating the price in the context of selling stock [31]) are expressed
through mixins or subclasses. Mixin layers or abstract subclasses [7] are enhanced over
mixin classes by high parameterization and the capability to capture collaboration on a
multiclass level [41]. Mixins serve to implement collaborations by encapsulating other

Section 2.3 5

mixins [41], resulting in the creation of mixin layers. Despite their main benefits, they are
restricted to modularizing nonhierarchical features [31].

Advanced decomposition owing to aspect-oriented programming also brings benefits to
the specification and design phases by solving the use-case modularity problem [25]. The
solution to this problem is required to represent extends and includes relationships using
aspect-oriented constructs and propagate this information even into diagrams used in the
specification and design phases of software development. Showing only information related
to a particular use case or its parts, including common classes and crosscutting behavior
with aspects, and only use-case-related methods and variables improve traceability. Con-
sequently, this makes communication with customers about business functionality smooth
because it concerns only a particular use case and nothing else. In the implementation
phase, developers of these diagrams have direct information about system entities, their
collaboration, and representation using object- and aspect-oriented programming. The
demonstration with relation to the abovementioned symmetric aspect-oriented software
composition based on peer use cases taking respective diagrams from Michalco’s thesis [32]
is shown in Figures 2.1 and 2.2. Use cases can be automatically replaced by more common
themes for aspect-oriented programming [45]. The use-case decomposition is adaptable
to incrementally establish software product lines from existing products, even at the de-
sign level. Variable features are represented and remain composed of whole using aspects.
Similarly, use cases can then be set up together to tackle platform variation according to
the incremental approach (designed by Alves et al. [2]) by resolving conflicts for different
products (mobile games) according to particular constraints (phone devices).

2.3 Aspects in Products as a Limiting Factor

Aspects improve the flexibility and reconfigurability of software systems, mainly of product
families, by controlling for the inclusion or exclusion of selected features [10]. The separa-
tion of concerns is achieved owing to the aspect orientation [43] used to compose or weave
the functionality into variants. In addition, heterogeneous and homogeneous concerns can
be managed in this manner. Compared with homogeneous concerns, heterogeneous con-
cerns deal with different behavior at each control flow point [10]. Separating concerns also
helps improve reusability by applying the same components in a different context, so they
are not system-specific [36].

Despite these important benefits of aspects, many other problems emerged during their
application. The use of aspect-oriented techniques requires understanding how join points
are specified to determine and resolve conflicts between aspects and the modified or newly
added source code that they influence [21]. Thus, aspects often complicate code debugging
and can be error-prone. Another problem is their inability to influence many pieces of code
inside a given method. The most advanced aspect-oriented languages, such as AspectJ,
work on the method and attribute level [28]. To overcome this problem, hooks to hang
the aspects are necessary [26]. The resulting products highly depend on aspects that
address additional dependencies according to their nature, originating from the source
implementation. For example, a special compiler is necessary for AspectJ, which requires
consistent support updates in ever-evolving Java. Additionally, aspectual proxies cause
load time-weaving problems [46] and their capabilities are provided at different levels of
maturity [23], while the invasiveness of libraries in other languages causes problems during
implementation. They even increase complexity owing to the unavailability of functionality
for the modularization of components.

3. | Methodology for Lightweight
and Automated Evolution of
In-Code Variability Supported
by Frameworks

Challenges in handling variability appear after a high level of complexity is reached. At
this point, an extensive number of features cannot be handled manually [9], particularly if
features collide during their interaction. On the other hand, modularization using aspect-
oriented programming tends to be hardly achievable [27]. Consequently, the features have
to be evolved from the very beginning in code level to ensure extendability with optional
employment of aspect-oriented programming and driven towards their massive introduc-
tion. Variability is flexibly handled in code using annotations leading to establishment of
associated type of software product lines which are annotation-based. They are ensuring
the establishment of highly configurable systems out of its features. Despite the benefits of
annotation-based software product lines, in-code variability management is not adjusted to
concisely preserve hierarchical information in the code in a lightweight, minimalistic, and
fully automated manner. Specifically, annotations are left without a selection procedure
based on in-code complexity, policy enforcement, naming conventions, managing domain
knowledge, and criteria for maintaining feature models directly in the code. Consequently,
we introduce a methodology for the establishment of a software product line in a lightweight
fashion, a framework with competing strategies based on in-code complexities concerning
the context of the entire code fragment to select the annotation with the lowest complexity,
a scalable solution infrastructure by fast matrix-based methods for graph matching and
clustering, and finally most of them entirely integrated into fully automated and mini-
malistic variability management. Additionally, the methodology is verified on established
software product lines prepared in accordance with the variability managed in the code,
but primarily on the minimalistic and fully automated version for managing fractals driven
by structural information towards its semantic extensions.

3.1 Annotation-Based Software Product Lines

The resulting software product lines should be capable of efficiently studying interacting,
stateful, and easily changeable feature combinations that can evolve from scratch fully au-
tomatedly. We ensured the mentioned capabilities with annotation-based software product
lines characteristic with massive use of recursion and stateful dependency introduced by
highly interactive UI elements bonded to the center element. Our lightweight aspect-
oriented method, with its particular extensions and adaptations, is used as the technology
to process annotations.

Section 3.2 7

3.1.1 Software Product Line for Canvas-Based Applications

The variability in this stateful canvas-based software product line is managed across com-
plex user interfaces, web services, components, and HTML templates. Each canvas element
has predefined characteristics, such as position on the canvas, the way in which overlap-
ping problems between elements are resolved, color, options to remove, duplicate, resize,
crop, and others. Consequently, these manipulations predefine the states of the canvas
and sometimes even have their own states used to handle the inner intermediate steps
(sub-operations).

The PuzzleToP lay is a fully adapted environment designed to set up different types
of puzzles to combine pieces to form the resulting shapes. The resized version is shown in
Figure 3.1.

Design3D is an environment adapted to design the surfaces or textures of 3D objects
intended to be used primarily on the web. The interface and majority of the available
features are shown while designing the bottle cover, as shown in Figure 3.2.

3.1.2 Families of Fractal Products as a Source of Variability

Fractal products are much simpler because an application state does not span out of recur-
sive behavior, making it manageable within the drawing. Each change is propagated into
repetitive phases, causing the visual performance of the implemented feature to be infinitely
detailed. Even minor changes in low code fragments tend to manifest as user-visible fea-
tures owing to recursive behavior, allowing one to massively introduce new features and/or
configure existing features and manage variability observable as infinitely detailed shapes.

Fractals are easily drawn inside the browser to the HTML canvas. Flexibility can be
observed in the possibility of producing various data concerning multiple representations
of the same fractal. Geometric shapes can be written as vectors or drawn as pixels in a
raster image.

Figure 3.1: Preview of
Puzzle To Play - resized

Figure 3.2: Preview of Design 3D

3.2 Lightweight Aspect-Oriented Software Product Lines with
Automated Product Derivation

Establishing software product lines is challenging, particularly if they are based on a less
widely accepted aspect-oriented paradigm. These two obstacles are addressed using an
aspect-oriented approach capable of establishing software product lines with automated

Section 3.2 8

product derivation in our initial paper [33]. The easy setup is shown in fast application
in two different cases, and the necessity to use only three types of annotations proved its
lightweight nature. Firstly, annotations, as opposed to wrappers, are used in the form
of comments. Secondly, the work introduces the hierarchical representation presented di-
rectly in JSON format in place of the variation points marked in the code. They are
known as configuration expressions and are used to configure the inclusion or exclusion of
an annotated code fragment in particular derived product. The complex rule is shown in
Figure 3.3. These expressions even express relations of the feature models (feature trees)
as shown in Figure 3.4 owing to their hierarchical nature and store additional information
and knowledge, such as constraints and variability selection settings. This brings novelty
to how variability, especially feature models, can be expressed and visualized in the code.
Continuously, it opens space for further optimizations according to various complexity met-
rics and testing multiple design options to enhance variability comprehension of complex
systems. Thirdly, fully automated product derivation is the main feature to highly benefit
from reuse, decreased production costs, and other capabilities of software product lines.

1 {"AND": {
2 "OR": {
3 "computer": "false

",
4 "AND": {
5 "computer": "

true",
6 "row": "

topDown"
7 }
8 },
9 playerNames": "true

"
10 }

Figure 3.3: A complex hi-
erarchical derivation rule
and its capability to ex-
press feature models.

Figure 3.4: The feature model of Battleship game with deriva-
tion rules.

Annotations differ semantically according to their type, which prescribes how they
should be recognized and handled by the functionality of the derivator. We propose three
types of annotations:
//@{}

is an annotation used to
manage the inclusion or
exclusions of the entire
file. This annotation can
be applied to classes, as-
pects, and interfaces. In
addition, it is feasible to
configure the validation
of some of their identi-
fication keywords when
deriving such entities by
the derivator.

//#{}
is annotation for func-
tionality smaller than
the size of particular
file but still modular,
especially to annotate
functions. After eval-
uating the configura-
tion expressions, such
functionality will be
included or excluded
according to the truth
value.

//%{}
is an annotation intended
for one-line code frag-
ments, particularly for im-
port statements. This an-
notation must be used in
combination with the pre-
vious annotation to sup-
port modularity as much
as possible. Included func-
tionality often introduces
new code constructs that
need to be imported.

Section 3.3 9

3.3 Aspect-Oriented Software Product Lines with No As-
pects in Products

Establishing a software product line that is capable of following the development practices
prescribed by the chosen framework restricts the effective use of aspect-oriented techniques
and tools. Primarily, composing components using prototype-based programming to evolve
features independently cannot be performed or requires deviating from the framework for
a single-page application and affecting development styles. Additionally, a new version of
framework-based libraries prevents the incorporation of aspect-oriented libraries, rendering
the introduced weaving mechanism nonfunctional. While following our previous approach,
our focus on establishing it in a lightweight fashion resolves these problems by restricting
the application of aspects only to variability management and bridging current development
styles in single-page application development by completely removing aspects from the
products. The direct focus on applying aspects exclusively to variability management
brings the possibility of restricting and uniformly prescribing how each aspect is affected.

Consequently, we claim the ability to satisfy the contradictory consideration that as-
pects are unwanted for quantification and obliviousness, which are otherwise praised. We
identified the advantages of software product lines and the possibility of adapting product
derivation to satisfy their undesirability in products and incorporated them into a novel
approach to establishing aspect-oriented software product lines without aspects in prod-
ucts supported by a framework. The lightweight fashion is introduced through TypeScript
decorators, from which we benefit. Furthermore, it tackles how to make it simpler and
more focused on the separation of variability following the idea of not propagating these
variability decorators into the resulting products, ensuring aspect-free products. For this
purpose, adaptations of design patterns are introduced to include binding their elements
into code fragments from which variable features consist and making them fully detachable
during product derivation, as can be seen in Figure 3.5 and Listing 3.1 that demonstrates
it on the Decorator pattern. Only modular entities as variable code fragments performed
at the code level can be annotated and easily detectable. The rest of the adaptations en-
sure the easy removal of aspect functionality from products while deriving fully functional
products according to the configured features.

Figure 3.5: Variability handling after the introduc-
tion of adapted variability-detachable design pat-
terns with their binding to code constructs

1 class Profile {
2 rank: number = 4.5;
3 @DecoratedFunc.

incorporateMembershipRank({"
group2": true})

4 checkRank(threshold: number):
boolean {

5 return threshold < this.rank;
6 }
7 }

Listing 3.1: Wrapped code of the
method

Section 3.4 10

3.4 Complexity of In-Code Variability: Emergence of De-
tachable Decorators

The constructs from known technologies for variability handling in code are mixed with
business code such as preprocessor directives originating from conditional compilation or
do not enforce policies when realized as comments observable in pure::variants or code is
uncompilable using original compilers noticeable in employment of tags originating from
frame technology and frame aspects. For example, Listing 3.2 taken from a demonstrative
video presentation of commercial solution called pure:variants [35] shows the variability
handling by wrapping the respective code fragment in comments. Their impact on code
complexity with respect to similar approaches is left unnoticed and unmeasured.

Consequently, incorporating variability constructs inside the code according to our de-
signed variability annotations (that overcome most of mentioned disadvantages and which
is presented in Section 3.2) and wrapper based variants makes it possible to automatically
compare them and even assess their complexity, especially the employment of feature mod-
els (hierarchical structures similar to trees) preserved in code. We are demonstrating it on
example shown in Listing 3.3 which is pairwisely comparable with respective version from
widely spread wrapper based variants in Listing 3.4.

1 //PV:IFCOND(pv:hasFeature(’
HazardWarning’))

2 static int
warning_lights_value; [
REMAINING CODE OF
HazardWarning...]

3 //PV:ENDCOND

Listing 3.2: Expressing in-
code variability in pure::variants
(adopted
from pure::systems [35])

Figure 3.6: Comparative analysis of code constructs
complexities of variability management

1 // @ts-ignore
2 @DecorSRVC.skipLVP({"algoType": "[’A1’, ’A2

’, ’A3’]"}, "import { State } from ’../
store’;") var newA;

3 //import { State } from ’../store’;

Listing 3.3: Annotated import statement
by decorators

1 var EXP_START6 = { "algoType": "[’A1’, ’A2
’, ’A3’]" };

2 import { State } from "../store";
3 var EXP_END6 = { "EXP_END": "--" };

Listing 3.4: Wrapped code of the import
statement

After extraction and optional updates, their complexity can be measured in a par-
ticular code context. Consequently, we designed the way how to compare and evaluate
code constructs of variability management. The key is the visualization of the code, its
complexity assessments, and their differences in the context of an analyzed modular unit
consisting of the analyzed construct and surrounding code. Subsequently, the pair of code
complexities from the state before and after the particular transformation of each file in
the entire software product line are statistically tested to evaluate the consequences of in-
corporating different variability constructs. This paired statistical test provides evidence of
a significant difference between the complexity of the initial and transformed codes across
the entire software product line. The characteristic scheme, including compared scripts
after their transformation into predefined forms, evaluated metrics with their differences,
and statistical evaluation under the collected pairs across the entire software product line,
is drawn in Figure 3.6.

Section 3.5 11

3.5 Matrix Based Approach to Structural and Semantic Anal-
ysis for Software Product Line Evolution

The creation of feature models (feature trees) using hierarchical clustering [8] is not a new
idea, and it has been successfully used in software product lines for some time, especially in
Aspect-oriented product line engineering (AMPLE) project [37]. Initially, the application
of their clustering algorithms consists of mining features with their dependencies, usually
with latent semantic analysis primarily from documentation and code. We proceed further
when we cover not only semantics but even structural information and the entire range
between them to produce resoective views in fully automated fashion. In its application we
benefit from existing modular units of software applications and do not directly focus on
feature extraction. In our case, we match similar nodes using fast polynomial algorithms
with the ability to characterize the similarity of edges (between software components) op-
tionally and consider node importance in accordance with dependencies on other modules.
The significant difference lies in its ability to be applied in a fully automated fashion as
a primary element in the Big Data infrastructure. We intend to support views on exist-
ing variability-driven software product line semantics, structure, and further automated
domain knowledge extraction.

we consider the existing modular units of software applications and do not directly
focus on feature extraction. Instead, Entire incorporation of matrix based matching and
clustering algorithms into a configurable approach (extended with more complex edge-
similarity scores) to support software product line evolution is shown in the flowchart
diagram in Figure 3.7.

Figure 3.7: Matrix based semantic analysis of features enhanced with node scores

Section 3.6 12

3.6 Fully Automated Software Product Line Evolution with
Diverse Artifacts

Existing approaches in software product lines usually neglect knowledge modeling and sim-
ulation of the interaction between features capable of bringing dynamism and automation.
Consequently, these solutions miss opportunities to resolve associated and emerging prob-
lems, including defect detection or quality assurance, which can be solved by effectively
extracting and utilizing knowledge from data based on the differences between variants.
We bring capabilities to seize them in introducing a fully automated and minimalistic ap-
proach to software product line evolution that strictly focuses on handling variability at
low-level code fragments.

The minimalistic evolution concerning variability handling in the program is handled in
the processed abstract syntax tree and then in the code according to the following points:
Configuring
parameters

paramVP[id] Vari-
ability is ex-
pressed using
wrappers

Annotating negative
variability

AnnotationVP[id] Variability is ex-
pressed using detachable decora-
tors but without variability con-
figuration expressions

Marking positive
variability

markerVP[id]
Variability is ex-
pressed using detach-
able decorators

It incorporates the autonomous modeling of emerging knowledge across preconfigured
simulations. Specifically, fully automated knowledge-driven software product line evolu-
tion provides various views on an existing software product line, its variants, and their
evolution through semantic and structural information accompanied by the time and order
of the performed changes. We initially developed our approach for software product line
evolution, followed by its successful application to the evolution of fractal scripts. The
emerging instance of the five-sided fractal software product line and its possibly derived
products must be analyzed and abstracted from particular information in multiple ways,
each being treated as a product-representative view.

Figure 3.8: Relations amongst diverse representations for pre-
sented five-sided fractal in software product line evolution

The whole fractal is effec-
tively captured in the re-
spective views presented
as puzzles (code from
which is solution set up)
that are combined into a
whole using ontology, as
shown in Figure 3.8.

The fully automated evolution applied to evolution of fractals is visualized in Figure 3.9
and can be compared even to its respective generalization shown in Figure 3.10.

Fractal products are much simpler because an application state does not span out
of recursive behavior, making it manageable within the drawing. Each change is propa-
gated into repetitive phases, causing the visual performance of the implemented feature
to be infinitely detailed. Even minor changes in low code fragments tend to manifest as
user-visible features owing to recursive behavior, allowing one to massively introduce new
features and/or configure existing features and manage variability observable as infinitely
detailed shapes.

Section 3.6 13

Figure 3.9: The process of getting various representations from the fractal script and using
it for the software product line evolution

Figure 3.10: High-level view on software product line evolution process

4. | Results

This thesis brings the following contributions that support the thesis statement:

• Approach to fully automated software product line evolution with diverse
artifacts supported by a framework and tools (Chapter 3.6). The approach is
driven by the iterative and incremental establishment of features based on structural
and semantic information within the code. We support it with the implementation
of the framework. The minimalism we achieved by focusing only on variability han-
dling which consists of annotating features as common or variable and introducing
features automatically by inserting calls to existing functionality according to the
contextual information, including calls that can be made using available variables.
Diverse representations originating from variability annotated source code are ex-
tracted and organized in a semantic graph to derive new knowledge and models for
making decisions about evolution based on semantics. The other tool automatically
records part of the domain knowledge contained within the variability configurations.

• Study of the complexity of in-code variability (Chapter 3.4). This study jus-
tifies the in-code representation of annotations used in our initial lightweight aspect-
oriented approach with automated product derivation. We introduced an automated
approach to an exploratory study of the in-code complexity of constructs belonging
to variability management, which primarily enables the comparison of annotations
adapted for variability handling using code complexity metrics. The approach even
supports the optional design of new constructs used for the variability handling in
code. Practical insights into the usability of new code constructs can be analyzed,
such as the capability to not blend with the rest of the business logic or to capture a
particular place in the code visually. We supported the approach to the exploratory
study of variability management in-code complexity with a framework to evaluate
complexities automatically. We statistically and automatically compared detachable
decorators with wrapper constructs (in-code representation of tags from frame tech-
nology or block comments from pure::variants). From this evaluation, we determined
that detachable decorators are significantly less complex. From an evaluation based
on comparing complexity with and without any variability constructs, we gained
insights into how determined representation with low complexity can be optimized
further with information about the threshold obtained from each complexity metric.
We recommend supporting some illegal decorators/annotations according to statis-
tical evaluation that, on the borderline, proved the significance difference between
complexity caused by the necessity of positioning dead code constructs visually next
to the code fragments belonging to variability and without these dead code constructs
(the code is compared with and without these dead code constructs).

• Establishing annotation-based software product lines as in-code variability
observables of different complexity, size, and organization (Chapter 3.1).
Various aspects of in-code variability management have been neglected in existing
software product lines, including evolution based on structural information from the
code, framework restrictions, immature aspects to capture constructors or be chained,

15

and merging platforms. The introduced single-page applications and established soft-
ware product lines are perceived as tools for handling various challenges related to
variability management. We developed two highly differentiating canvas-based Angu-
lar single-page applications called Puzzle to Play and Design 3D that can be supplied
for commercial purposes to be used as sources in the establishment of the respec-
tive software product line, followed by the possibility of analyzing the problems that
occurred in their integration. From these applications, we established a software
product line for canvas-based single-page applications through which we achieved
high usability, statefulness, and reuse. However, we tackled and resolved issues with
variability handling related to the restrictions of the Angular framework and the ap-
plicability of aspect-oriented programming. Similarly, we introduced and established
a software product line for evolving fractals by following and successfully fulfilling
the aim to handle variability in small code scripts. We achieved the feasibility of
merging two platforms from introduced software product lines into one, which leads
to the introduction of new kinds of products owing to the possibility of intertwining
the software product line to evolve fractal scripts with those for the evolution of
canvas-based applications and analyzing the transition from software product line
evolution based on structural information to those demanding comprehension of se-
mantic information to adapt change into particular (even stateful) context.

• Matrix based approach to structural and semantic analysis supporting
software product line evolution (Chapter 3.5). We integrated fast hybrid
methods for graph matching and clustering operating using similarity metrics into
a proposed fast approach capable of massively merging graphs and clustering them
into structural and semantic views to support software product line evolution. We
supported the decisions to merge related nodes or omit them performed on the graph
with the additionally evaluated similarities between the connections. We supported
our approach with a tool to persist and visualize graphs in a graph database. An
adjacency matrix is extracted by retrieving the associated semantic information for
a particular graph using the respective graph queries. Angular applications are ana-
lyzed as modular units perceived as software product line components by observing
their relatedness and characterizing them using a similarity measure. Subsequently,
we produce semantic and structural views by balancing this measure.

• Approach to developing aspect-oriented software product lines with no
aspects in products (Chapter 3.3). We transformed the three types of annota-
tions introduced in our approach, called lightweight software product lines with fully
automated product derivation, into code constructs based on decorators to handle
variability exclusively. We developed an approach to establish a software product line
for Angular canvas-based single-page applications based on these annotations. We
propose aspect-free products as a solution to issues with immature aspects incapable
of capturing constructor calls or being chained and restrictions introduced by the
Angular framework, especially the necessity to register components in modules that
prevent the advanced modularization of features using feature-oriented decomposi-
tion. To ensure product derivation, we prepared a product derivator tool capable of
removing aspects from final products using adaptations of recreated object-oriented
design patterns into aspect orientation for easily detachable components belonging to
the variability without leaving aspects in code. In its design, we ensured minimalism
and ease of removing aspects from resulting products by applying aspects exclusively
to implement variability management. In addition, we proposed a new annotation
type to easily copy the code to the requested location according to the variability
configuration.

Section 4.1 16

• Approach to developing lightweight aspect-oriented software product lines
with automated product derivation (Chapter 3.2). To establish lightweight
aspect-oriented software product lines, we overcome two primary problems: establish-
ing a product line is not trivial, and aspects are not widely spread. We introduced an
approach to establish a lightweight aspect-oriented software product line with three
designed types of annotations incorporated using comments in the code to annotate
variability in code and a custom program to derive final products in an automated
manner. In this approach, we proposed concise hierarchical configuration expressions
in JSON format inside our annotations, following our initial idea of preserving feature
models (feature trees) in code with perspectives of advantages of its applicability in
case of full automation and improving comprehension of polluted source code with
annotations from annotation-based software product lines.

4.1 Clarifying Lightweight Nature

To evaluate impact of handled variability in code we set up following hypotheses:
Hypothesis 1

Variability expressions extracted
from annotations do not significantly
change the complexities of most
evaluated metrics.

Hypothesis 2
Changing from wrappers to detach-
able decorators significantly improves
the complexity of most evaluated
complexity metrics.

Hypothesis 3
Removal of all variability constructs
from Case 1 does not significantly
change at least one of the evaluated
complexity metrics.

Hypothesis 4
Unwanted dead code constructs sig-
nificantly change complexity mea-
sured by most evaluated complexity
metrics.

Table 4.1: Code complexity for Case 3 and 1 compared.

Name of compared
metric Corr. W p-

value 95% CI Est. p>0.05

Cyclomatic Complexity 1.0000 0 1.0000E+00 NaN, NaN NaN TRUE
Cyclomatic Density 0.8226 0 3.5776E-13 -4.1959, -2.28 -3.02 FALSE
Halstead’s Bugs 0.9997 2556 2.4526E-13 0.01, 0.02 0.0141 FALSE
Halstead’s Difficulty 0.9971 2237 5.9298E-09 0.60, 0.80 0.7390 FALSE
Halstead’s Effort 0.9988 2386 2.2106E-10 503.04, 1493.10 841.6983 FALSE
Halstead’s Length 0.9997 2556 9.3382E-17 6.00, 6.00 6.0000 FALSE
Halstead’s Time 0.9988 2386 2.2106E-10 27.95, 82.95 46.7609 FALSE
Halstead’s Vocabulary 0.9994 2484 4.2116E-14 3.00, 3.45 3.0000 FALSE
Halstead’s Volume 0.9997 2556 2.4761E-13 39.32, 45.96 42.2363 FALSE

Halstead’s Identifiers Dis-
tinct Operands 0.9996 2415 2.5713E-16 2.00, 2.00 2.0000 FALSE

Halstead’s Identifiers To-
tal Operands 0.9999 2556 9.3382E-17 2.00, 2.00 2.0000 FALSE

Halstead’s Identifiers Dis-
tinct Operators 0.9886 2030 2.1410E-12 1.00, 1.50 1.0000 FALSE

Halstead’s Identifiers To-
tal Operators 0.9999 2485 9.8502E-17 4.00, 4.00 4.0000 FALSE

LOC Physical 0.9998 2556 2.1563E-16 1.00, 1.00 1.0000 FALSE
LOC Logical 0.9999 2485 9.8502E-17 2.00, 2.00 2.0000 FALSE

The first case concerns
annotating the variability us-
ing detachable decorators.
The decorator pattern is ap-
plied to hang annotations re-
lated to the variability han-
dling of specific constructs
in code, such as methods,
classes, or declared variables,
and enforced separation of
these constructs and their ef-
fects from code and the use of
particular names to differen-
tiate them. In addition, their
dynamic updates are directly
feasible from the code. This
in-code representation results

in the modular preservation of code fragments belonging to the variability in classes and
methods designed to be performed in an automated fashion.

The second case concisely contains information about the complexity of configuration
expressions in the JSON format by evaluating them as JavaScript/TypeScript objects. We
achieved the capability to optimize these expressions according to the context of the code,
primarily by using code complexity measures.

Section 4.2 17

The third case is based on traditional wrapper constructs, and in comparison with the
first case, it resulted in higher complexity in the 15 used code complexity metrics, including
LOC, Halstead’s measures, cyclomatic complexity, and cyclomatic density. Our wrappers,
represented by variables bounding the code from the top and bottom, solved this problem
by evaluating the in-code complexity of the comments used in pure::variants. The results
of statistical Wilcoxon test are presented in Table 4.1.

The fourth case contains no variability handling constructs to gain a baseline for code
complexity optimization when searching for low-complexity constructs. It helps classify
emerged variability-handling constructs according to their contribution to the additional
complexity and evaluate preferences in optimizing such complexity towards its possible
insignificance.

The last case concerns the complexity of the annotated dead code constructs, which
are visually positioned next to the code fragments that cannot be decorated. The results
showed a significance value near the threshold but still resulted in a significant complexity
overhead for the majority of metrics. It pointed to the effects of legalizing illegal decorators
for one-line constructs, such as import statements, while producing less complex codes.
Less complexity is achieved by replacing the wrappers with detachable decorators.

4.2 Universal In-Code Variability Handling: High Level Syn-
ergy of Methodological Contributions

The combination of approaches through which we reached synergy leads to establish-
ing software product lines concerning variability handling in a lightweight, complexity-
optimized way, with applications to minimalistic and fully automated evolution of software
product lines, extendability, preserving feature models in code, and many applications as
follows.

The composition of all the approaches presented in this thesis is organized in a sequence
of questions related to in-code variability handling to choose and apply the corresponding
steps with the activity diagram shown in Figure 4.1. Initially, the in-code constructs to
preserve particular information in code while considering their application must be discov-
ered using the approach supported by the framework from our study called Complexity of
In-Code Variability: Emergence of Detachable Decorators (Chapter 3.4). According to this
study, when we handle variability in annotation-based software product lines, decorators
emerge as the construct with the lowest complexity, are detachable, and are not mixed
with business code, but other types can be reconsidered in this step. Subsequently, the
following question considers an analytical aim to observe and adapt changes to compo-
nents from the beginning of the automated software product line evolution. For example,
suppose we want to optimize the configuration expressions or restructure the code of the
annotation-based software product line during iterative and incremental incorporation of
changes. In this case, it is possible to use our approach, called Fully Automated Software
Product Line Evolution with Diverse Artifacts (Chapter 3.6), applied to the evolution of
fractal scripts. In contrast, our aim is to establish or extend a software product line with
a new software application (product) instead.

Additionally, it should be possible to evolve software product lines to fulfill future
business goals. When the answer to these questions is positive, then our Matrix Based
Approach to Structural and Semantic Analysis Supporting Software Product Line Evolu-
tion (Chapter 3.5) must be used to analyze intersections of common and variable features
from the software applications to establish software product line or from the existing soft-
ware product line and software application to properly extend this product line. Whether
the previously applied approach is applied or not, the following question concerns the
complexity of variability annotated scripts in an annotation-based software product line.

Section 4.2 18

Figure 4.1: Evolving software product lines with in-code variability in a lightweight and
automated manner

Suppose that functionality (software product line scripts with or without annotated
variability) is not complex and stateful. In this case, it can evolve using our Fully Auto-
mated Software Product Line Evolution with Diverse Artifacts (Chapter 3.6). Otherwise,
the cases must be checked to see if the previously mentioned approach to software product
line evolution cannot be applied. For example, if the existing complex functionality has

Section 4.2 19

already been implemented, it can only be called from a particular location handled during
such automated evolution. Another case is when we evolve something based on structural
information, such as recursively affecting executed functions or extending existing entities
with new variables and methods. The last case occurs if what is common and the variable
must be specified or reconsidered. When we are not doing any of these updates (our answer
is NO for all three of these questions), we must establish a software product line using a
different approach.

Consequently, the benefits of advanced modularization and the associated dependen-
cies on aspect-oriented programming must be considered. When aspects as part of the
aspect-oriented paradigm are immature, which manifests in the inability to chain the ad-
vices around a particular variation point, capture class constructor calls, etc., we should
use our Aspect-Oriented Software Product Lines with No Aspects in Products (Chapter 3.3)
approach. Otherwise, we must check whether the aspects are unwanted for some reason.
The primary reason can be caused by problems with the additional modularization of con-
cerns when the complexity of the resulting solution rapidly increases [14, 27]. The aspects
that affect a particular place cannot be forgotten even if they are not defined in that
place. Accordingly, changes in software development practices and skills in aspect-oriented
programming are necessary. In addition, the outdated aspect-oriented AspectJ compiler
with the current Java version complicates the incorporation of new language features.
When we accept aspect-oriented programming with undetachable dependencies, we should
proceed by establishing a software product line using our lightweight and semi-automated
approach called Lightweight Aspect-Oriented Software Product Lines with Automated Prod-
uct Derivation (Chapter 3.2).

Software product line evolution based on the Fully Automated Software Product Line
Evolution with Diverse Artifacts (Chapter 3.6) approach can be repeatedly applied. This
repetitive application can occur if one is unsatisfied with a generated dataset from diverse
representations, typically associated with the outcomes of evolution. Consequently, se-
mantic and structural views are necessary to obtain an overview of suitable changes to
benefit from the evolution of the software product line. In this case, we obtain these views
using our Matrix Based Approach to Structural and Semantic Analysis Supporting Software
Product Line Evolution (Chapter 3.5) and continue as mentioned above or according to the
sequence diagram shown in Figure 4.1. Otherwise, we repeat our Fully Automated Software
Product Line Evolution with Diverse Artifacts (Chapter 3.6). If we incorporate more fea-
tures simultaneously in this type of evolution, then it is suitable to inject functionality using
bulk joins. Because this process operates under graphs made from dynamically instanti-
ated entities, the Matrix Based Approach to Structural and Semantic Analysis Supporting
Software Product Line Evolution (Chapter 3.5) easily merges these graphs according to
semantic or structural similarities. When it is necessary to proceed by evolving based on
semantic information, it is beneficial to select the most appropriate approach (Lightweight
Aspect-Oriented Software Product Lines with Automated Product Derivation (Chapter 3.2)
or Aspect-Oriented Software Product Lines with No Aspects in Products (Chapter 3.3))
according to the aforementioned decisions regarding the incorporation of aspect-oriented
programming.

In the last phase, we must decide on reusing assets, designs, or methodologies from the
established software product line. When we proceed, we extend our observable software
product lines that are primarily perceived as tools for variability handling presented in
Chapter 3.1, called Establishing annotation-based software product lines as in-code vari-
ability observables of different complexity, size, and organization. These tools allow us to
reuse and combine assets, designs, and methodologies until they fulfill our goals. Finally,
we successfully evolved an annotation-based software product line in the code, followed by
the termination of the entire process.

5. | Conclusions

Annotation-based software product lines are widely spread software product lines charac-
terized by managing variability in code. Their prominent representatives, Linux kernel-
based operating systems, are the largest in the number of features, counting over several
thousand of them. Despite their benefits, several approaches and paradigms, including
aspect-oriented programming and feature-oriented decomposition, overcome them when
successfully separating and modularizing features. They demand additional tool support
and changes in the development practices and paradigms. Primarily, unknown effects from
the outside to a particular code fragment known as obliviousness [18] at a specific place
in the code complicate their applicability in a lightweight manner. Following this per-
spective, the effects on user cognitive load demand the analysis of complexity and ease of
comprehending variability annotations in code.

The current state of the art lacks the ground to perform this operation because of over-
lapping annotated variability and business logic in the annotation-based version of software
product lines. However, other versions following feature-oriented decomposition do not ex-
hibit this problem because they have fully separated variability. However, they even make
code oblivious to incorporated changes with the necessity to track these changes. Auto-
mated evolution is more complicated and unrealistic for some changes owing to increased
complexity. Accordingly, we perceive that the ground for full automation is left undiscov-
ered in the context of the lightweight establishment of software product lines. Specifically,
it is necessary to produce quality products massively and tackle the increased complexity
caused by the introduced variability. After that, advanced techniques will be employed in-
cluding aspect-oriented programming.To the best of our knowledge, no research has focused
on creation/generating and annotating features from the early beginning in an automated
fashion to gain insights into the domain. Consequently, we designed a methodology to
bring full automation into software product line evolution encompassing diverse artifacts
to organize knowledge from modeling and simulations of variability contained in the code
so that all of these operations are performed in a minimalistic and lightweight fashion.

The clarification of performed design decisions for such in-code variability management
consists of benefiting from achieved minimalism, preservation of hierarchic information in
code, and optimizations of annotations for variability handling as drivers of our fully au-
tomated evolution. Minimalism lies in focusing restrictively on the variability handling
that is based on our proposed lightweight complexity-optimized approach for establish-
ing annotation-based software product lines with variability handling in code. Ability to
preserve hierarchical information in code will improve comprehensibility through preserv-
ing feature models in code. Used annotations are compared and selected based on lower
in-code complexity while supporting policy enforcement, naming conventions, managing
domain knowledge, and observing criteria for maintaining feature models directly in the
code, which will improve the comprehensibility of the variability managed in the code. Sys-
tematic and iterative establishment of features in software product lines can be achieved
based on structural information taken from source code by subsequently applying it to
discover domain knowledge through wiring diverse representations originating from vari-
ability annotated source code into a semantic graph, providing the capability to handle
variability from the beginning fully automatically.

Bibliography

[1] N. Abbas and J. Andersson. Harnessing variability in product-lines of self-adaptive
software systems. In Proceedings of the 19th International Conference on Software
Product Line, pages 191–200, Nashville Tennessee, 07 2015. ACM. doi: 10.1145/
2791060.2791089.

[2] V. Alves, P. M. Jr, and P. Borba. An incremental aspect-oriented product line method
for j2me game development. In Workshop on Managing Variability Consistently in
Design and Code (in conjunction with OOPSLA´2004), page 3, 01 2004.

[3] T. Berger. variability, 2011. URL https://code.google.com/archive/p/
variability/.

[4] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. A study of variability
models and languages in the systems software domain. Software Engineering, IEEE
Transactions on, 39:1611–1640, 12 2013.

[5] J. Bosch. Design & Use of Software Architectures—Adopting and Evolving a Product
Line Approach. Addison-Wesley Professional, 01 2000. ISBN 978-0-201-67494-1.

[6] D. Bovet and M. Cesati. Understanding The Linux Kernel. Oreilly & Associates Inc,
2005.

[7] G. Bracha and W. Cook. Mixin-based inheritance. SIGPLAN Not., 25(10):303–311,
Sept. 1990.

[8] K. Chen, W. Zhang, H. Zhao, and H. Mei. An approach to constructing feature
models based on requirements clustering. In 13th IEEE International Conference on
Requirements Engineering (RE’05), pages 31–40, 2005.

[9] L. Chen, M. Ali Babar, and N. Ali. Variability management in software product lines:
A systematic review. In Proceedings of the 13th International Software Product Line
Conference, pages 81–90, 01 2009.

[10] A. Colyer, A. Rashid, and G. Blair. On the separation of concerns in program families.
Technical report, Lancaster University, 2004. vol 107.

[11] H. M. Company. The American Heritage Dictionary of the English Language, Fourth
Edition. Houghton Mifflin Company, 4 edition, 2009.

[12] K. Czarnecki. Generative Programming Principles and Techniques of Software Engi-
neering Based on Automated Configuration and Fragment-Based Component Models.
PhD thesis, Department of Computer Science and Automation: Technical University
of Ilmenau, 1999.

[13] T. M. Dao and K. C. Kang. Mapping Features to Reusable Components: A Problem
Frames-Based Approach. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg,
F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen,

https://code.google.com/archive/p/variability/
https://code.google.com/archive/p/variability/

BIBLIOGRAPHY 22

M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, J. Bosch, and J. Lee,
editors, Software Product Lines: Going Beyond, volume 6287, pages 377–392. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010.

[14] I. Despi and L. Luca. Aspect oriented programming challenges. Anale. Seria Infor-
matică, 2(1), 2004. URL https://hdl.handle.net/1959.11/7998.

[15] S. El-Sharkawy, N. Yamagishi-Eichler, and K. Schmid. Metrics for analyzing variabil-
ity and its implementation in software product lines: A systematic literature review.
Information and Software Technology, 106:1–30, 2019.

[16] W. Fenske, T. Thüm, and G. Saake. A taxonomy of software product line reengi-
neering. In Proceedings of the 8th International Workshop on Variability Modelling of
Software-Intensive Systems, pages 1–8, Sophia Antipolis France, 01 2014. ACM.

[17] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza, A. Garcia, S. Soares,
F. Ferrari, S. Khan, F. Castor, and F. Dantas. Evolving software product lines with
aspects: An empirical study on design stability. In Proceedings of Proceedings of the
30th international conference on Software engineerin, ICSE’08. ACM, 2008.

[18] R. E. Filman and D. P. Friedman. Aspect-oriented programming is quantification and
obliviousness. In Proceedings of the Workshop on Advanced Separation of Concerns
in Object-Oriented Systems, ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2000, page 9, Minneapolis, Minnesota
USA, 2000. RIACS. "RIACS Technical Report 01.12, 2001".

[19] FreeBSD Foundation. The freebsd project, 2025. URL https://www.freebsd.org/.

[20] M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou. Variability in software
systems—a systematic literature review. IEEE Transactions on Software Engineering,
40(3):282–306, 2014.

[21] S. Hanenberg, C. Oberschulte, and R. Unland. Refactoring of aspect-oriented soft-
ware. In 4th Annual International Conference on Object-Oriented and Internet based
Technologies, Concepts, and Applications for a Networked World (Net. ObjectDays),
page 18, 2003.

[22] R. Hellebrand, A. Silva, M. Becker, B. Zhang, K. Sierszecki, and J. Savolainen. Co-
evolution of variability models and code: An industrial case study. In SPLC ’14: 18th
International Software Product Line Conference Florence Italy, volume 1, page 10, 09
2014.

[23] W. Huang, C. He, and Z. Li. A comparison of implementations for aspect-oriented
javascript. In International Conference on Computer Science and Intelligent Commu-
nication (CSIC 2015), Zhengzhou, China, 2015.

[24] C. Hunsen, B. Zhang, J. Siegmund, C. Kästner, O. Leßenich, M. Becker, and S. Apel.
Preprocessor-based variability in open-source and industrial software systems: An
empirical study. Empirical Software Engineering, 21(2):449–482, Apr. 2016.

[25] I. Jacobson and P.-W. Ng. Aspect-Oriented Software Development with Use Cases
(Addison-Wesley Object Technology Series). Addison-Wesley Professional, 2004.

[26] C. Kastner, S. Apel, and D. Batory. A Case Study Implementing Features Using
AspectJ. In 11th International Software Product Line Conference (SPLC 2007), pages
223–232, Kyoto, Japan, Sept. 2007. IEEE.

https://hdl.handle.net/1959.11/7998
https://www.freebsd.org/

BIBLIOGRAPHY 23

[27] H. A. Kurdi. Review on aspect oriented programming. International Journal of
Advanced Computer Science and Applications, 4(9), 2013.

[28] K. Lee and K. C. Kang. Feature Dependency Analysis for Product Line Component
Design. In J. Bosch and C. Krueger, editors, Software Reuse: Methods, Techniques,
and Tools, volume 3107, pages 69–85. Springer Berlin Heidelberg, Berlin, Heidelberg,
2004.

[29] J. Liebig, C. Kästner, and S. Apel. Analyzing the discipline of preprocessor annota-
tions in 30 million lines of C code. In Proceedings of the tenth international conference
on Aspect-oriented software development, pages 191–202, Porto de Galinhas Brazil,
Mar. 2011. ACM.

[30] N. Loughran and A. Rashid. Framed aspects: Supporting variability and configura-
bility for AOP. In Proceedings of 8th International Conference on Software Reuse,
ICSR 2004, LCNS 3107, Madrid, Spain, 2004. Springer.

[31] M. Mezini and K. Ostermann. Variability management with feature-oriented pro-
gramming and aspects. SIGSOFT Softw. Eng. Notes, 29(6):127–136, Oct. 2004.

[32] P. Michalco and V. Vraňič. Prípady použitia a témy v prístupe theme/doc. Master’s
thesis, FIIT STU, 2009. Diplomová práca.

[33] J. Perdek and V. Vranić. Lightweight aspect-oriented software product lines with
automated product derivation. In A. Abelló, P. Vassiliadis, O. Romero, R. Wrembel,
F. Bugiotti, J. Gamper, G. Vargas Solar, and E. Zumpano, editors, New Trends
in Database and Information Systems, pages 499–510, Cham, 2023. Springer Nature
Switzerland.

[34] K. Pohl, G. Böckle, and F. Linden. Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer-Verlag, Berlin, Heidelberg, 01 2005. ISBN 978-
3-540-24372-4.

[35] pure::systems. PLE & code—managing variability in source code, 2020. URL https:
//youtu.be/RlUYjWhJFkM.

[36] A. Rashid, A. Moreira, and J. Araújo. Modularisation and composition of aspectual
requirements. In Proceedings of the 2nd international conference on Aspect-oriented
software development - AOSD ’03, pages 11–20, Boston, Massachusetts, 2003. ACM
Press.

[37] A. Rashid, J.-C. Royer, and A. Rummler, editors. Aspect-Oriented, Model-Driven
Software Product Lines: The AMPLE Way. Cambridge, 09 2011.

[38] S. She and T. Berger. Formal Semantics of the Kconfig Language, 01 2010. URL
https://www.eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf.

[39] S. She, R. Lotufo, T. Berger, A. Wąsowski, and K. Czarnecki. Reverse engineer-
ing feature models. In Proceedings of the 33rd International Conference on Software
Engineering, pages 461–470, Waikiki, Honolulu HI USA, 05 2011. ACM.

[40] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and O. Spinczyk. Is the linux kernel
a software product line? In Proceedings SPLC workshop on open source software and
product lines, 01 2007.

https://youtu.be/RlUYjWhJFkM
https://youtu.be/RlUYjWhJFkM
https://www.eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf

BIBLIOGRAPHY 24

[41] Y. Smaragdakis and D. Batory. Implementing layered designs with mixin layers. In
G. Goos, J. Hartmanis, J. van Leeuwen, and E. Jul, editors, ECOOP’98 — Object-
Oriented Programming, volume 1445, pages 550–570. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1998. Series Title: Lecture Notes in Computer Science.

[42] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat. Feature consis-
tency in compile-time-configurable system software: facing the linux 10,000 feature
problem. In Proceedings of the Sixth Conference on Computer Systems, EuroSys ’11,
page 47–60, New York, NY, USA, 2011. Association for Computing Machinery. ISBN
9781450306348.

[43] J. van Gurp and J. Bosch. Separation of concerns: A case study. Technical report,
University of Groningen, 2002.

[44] B. Veer and J. Dallaway. The ecos component writer’s guide, 2001. URL https:
//ecos.sourceware.org/ecos/docs-latest/cdl-guide/cdl-guide.html.

[45] V. Vranić and P. Michalco. Are themes and use cases the same? Information Sciences
and Technologies, Bulletin of the ACM Slovakia (Special Section on Early Aspects,
AOSD 2010), 2:66–71, 01 2010.

[46] H. Washizaki, Y. Nagai, R. Yamamoto, A. Kubo, T. Mizumachi, K. Eguchi,
Y. Fukazawa, N. Yoshioka, H. Kanuka, T. Kodaka, and N. Sugimoto. AOJS: aspect-
oriented javascript programming framework for web development. In Proceedings of
the 8th workshop on Aspects, components, and patterns for infrastructure software -
ACP4IS ’09, page 31, Charlottesville, Virginia, USA, 2009. ACM Press.

[47] webmaster@os. The l4re microkernel, 2023. URL https://os.inf.tu-dresden.de/
fiasco/.

[48] B. Zhang, M. Becker, T. Patzke, K. Sierszecki, and J. E. Savolainen. Variability
evolution and erosion in industrial product lines: a case study. In T. Kishi, S. Jarzabek,
and S. Gnesi, editors, 17th International Software Product Line Conference, SPLC
2013, Tokyo, Japan - August 26 - 30, 2013, pages 168–177. ACM, 2013.

https://ecos.sourceware.org/ecos/docs-latest/cdl-guide/cdl-guide.html
https://ecos.sourceware.org/ecos/docs-latest/cdl-guide/cdl-guide.html
https://os.inf.tu-dresden.de/fiasco/
https://os.inf.tu-dresden.de/fiasco/

A. | Publications

A.1 Articles in International Scientific Journals

J. Perdek (80%) and V. Vranić. Fully Automated Software Product Line Evolution
With Diverse Artifacts. IEEE Access, 13: 27325-27358, 2025. IEEE. doi: 10.1109/AC-
CESS.2025.3539868. (SJR Q1 / JCR Q2)

Cited by:

H. Chemingui. Crafting product configuration guidance through process mining
support. Business Process Management Journal. 2025 Apr 30.

J. Perdek (80%) and V. Vranić. Automated Assessment of Software Product Line Con-
figuration Expressions Through Code Complexity Metrics. Proceedings on Engineering
Sciences, 2025. Accepted. (SJR Q3)

A.2 Articles in Proceedings of International Scientific Con-
ferences

J. Perdek (80%) and V. Vranić. Complexity of In-Code Variability: Emergence of De-
tachable Decorators. In Proceedings of 21st International Conference on Software Reuse,
ICSR 2024, LNCS 14614. Limassol, Cyprus. Springer, 2024. doi: 10.1145/3698322.3698357.
(Scopus)

J. Perdek (80%) and Valentino Vranić. Matrix Based Approach for Structural and Se-
mantic Analysis Supporting Software Product Line Evolution. In Proceedings of 10th
Workshop on Software Quality Analysis, Monitoring, Improvement, and Applications,
SQAMIA 2023. Bratislava, Slovakia. CEUR Workshop Proceedings, 2023. (Scopus)

Cited by:

Y. Kataieva and M. Nemec. Determining software quality using code analysis
metrics. 29th International Conference on Information Technology (IT). Zabljak,
Montenegro. 2025. pp. 1-4, doi: 10.1109/IT64745.2025.10930266

J. Perdek (80%) and Valentino Vranić. Lightweight Aspect-Oriented Software Product
Lines with Automated Product Derivation. In New Trends in Databases and Information
Systems: ADBIS 2023 ADBIS 2023 Short Papers, Doctoral Consortium and Workshops:
AIDMA, DOING, K-Gals, MADEISD, PeRS, CCIS 1850, Modern Approaches in Data En-
gineering and Information System Design, MADEISD 2023, a workshop at 27th European

Section A.3 26

Conference on Advances in Databases and Information Systems, ADBIS 2023. Barcelona,
Springer, Spain. Springer, 2023. (Scopus)

Cited by:

O. Udvardi and J. Lang. Engineering Learning Content Through Question and
Answer Pairs. SN Computer Science. 6, 485 2025. https://doi.org/10.1007/s42979-
025-04011-3

A.3 Presentations at International Scientific Conferences

1. Lightweight aspect-oriented software product lines with automated product deriva-
tion
Place: Barcelona (UPC), Spain, 2023

2. Matrix based approach for structural and semantic analysis supporting software prod-
uct line evolution
Place: Bratislava (FIIT), Slovakia, 2023

3. Complexity of in-code variability: Emergence of detachable decorators
Place: Limassol (St. Raphael Resort), Cyprus, 2024

4. Automated Assessment of Software Product Line Configuration Expressions Through
Code Complexity Metrics
Place: Oxford (online), United Kingdom/online, 2025

A.4 Articles in Preparation

J. Perdek (80%) and V. Vranić. Aspect-Oriented Software Product Lines with No As-
pects in Products. Submitted to International Journal of Computing and Digital Systems,
2025. (SJR Q3)
J. Perdek and Valentino Vranić. Enforcement of Variability Comprehension By Preserv-
ing Feature Models in Code. To be submitted to IEEE Access. (SJR Q1 / JCR Q2)

	Introduction
	Thesis Statement
	Contributions

	Handling Variability in Software Product Lines
	Implementing Variability in Code: Annotative Approaches
	Implementing Variability in Code: Compositional Approaches
	Aspects in Products as a Limiting Factor

	Methodology for Lightweight and Automated Evolution of In-Code Variability Supported by Frameworks
	Annotation-Based Software Product Lines
	Software Product Line for Canvas-Based Applications
	Families of Fractal Products as a Source of Variability

	Lightweight Aspect-Oriented Software Product Lines with Automated Product Derivation
	Aspect-Oriented Software Product Lines with No Aspects in Products
	Complexity of In-Code Variability: Emergence of Detachable Decorators
	Matrix Based Approach to Structural and Semantic Analysis for Software Product Line Evolution
	Fully Automated Software Product Line Evolution with Diverse Artifacts

	Results
	Clarifying Lightweight Nature
	Universal In-Code Variability Handling: High Level Synergy of Methodological Contributions

	Conclusions
	Bibliography
	Appendices
	Publications
	Articles in International Scientific Journals
	Articles in Proceedings of International Scientific Conferences
	Presentations at International Scientific Conferences
	Articles in Preparation

