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Abstrakt	

S narastajúcim počtom koncových zariadení v sieťach Internetu vecí (IoT) vzniká potreba vytvoriť 
škálovateľné riešení a vysokou mierou adaptácie. Výskumy v oblasti nízko-energetických široko-
oblastných sietí ukázali, že decentralizovaný prístup s využitím strojového učenia ľahko prekonáva 
centralizované riešenia a predstavuje aktuálne smerovanie vývoja technológií. 

Technológia LoRa je vhodnou alternatívou pre mobilné uzly, ale chýba jej potenciál nie je 
naplnený bez spoľahlivých mechanizmov na adaptáciu uzlov na zmeny v sieti a efektívne nastavenie 
komunikačných parametrov s cieľom minimalizovať stratovosť paketov a maximalizovať spoľahlivosť 
siete. S tým je spojený problém spotreby energie, ktorú je potrebné dôkladne preskúmať, aby boli 
uzly schopné konkurovať existujúcim riešeniam, pretože existuje dopyt po zariadeniach IoT, ktoré 
môžu byť napájané niekoľko rokov na jednej batérii. 

Táto dizertačná práca sa zaoberá súčasným stavom výskumu zefektívnenia komunikácie zariadení 
komunikujúcich pomocou technológie LoRa. Dôraz je kladený na zefektívnenie komunikácie 
pomocou decentralizovaného strojového učenia a porovnávajú sa dostupné algoritmy určené na 
riešenie problémy viacrukého banditu. Vzhľadom na nižšiu zložitosť a sľubné simulačné výsledky je 
algoritmus Thompsonovho vzorkovania vhodným kandidátom pre decentralizované učenie v sieťach 
LoRa. Práca pokračuje analýzou dvoch prístupov k detekcii obsadenia kanála, pričom sa v praxi 
uprednostňuje prístup, ktorý je viac šetrný k batériám a využíva mechanizmus vstavanej hardvérovej 
detekcie aktivity kanálu. Naša práca sa tiež zameriava na známe simulačné prostredia sietí, od čisto 
matematických modelov po vlastné riešenia a moduly pre známe nástroje na simuláciu sietí (NS-3). 
Po dôkladnom preskúmaní bola vybratá najvhodnejšia alternatíva v podobe úpravy existujúceho 
simulátora. Vyššie spomenuté body majú pripraviť siete využívajúce technológiu LoRa na nasadenie v 
mestskom prostredí  s vysokou hustotou komunikácie a rizikom rušenia. 

V ďalších kapitolách sme navrhli naše riešenie, ktoré zlepšuje proces učenia koncových uzlov pri 
výbere spoľahlivého primárneho (frekvencie) a sekundárneho (faktor rozprestretia, angl. Spreading 
Factor) kanála. Tento proces je dôležitý najmä v mestských oblastiach, kde sa zvyšuje riziko zahltenia 
kvôli nehostinnému prostrediu v nelicencovaných pásmach. Realizovali sme experimenty s 10 
fyzickými koncovými zariadeniami vo fyzickom prostredí na hodnotenie výkonu navrhnutých 
algoritmov, vrátane tzv. Adaptive Data Rate, tzv. Upper Confidence Bound s detekciou aktivity kanálu 
a Thompsonovho vzorkovania s detekciou aktivity kanálu a alebo prístupu bez detekcie, tzv. metóda 
ALOHA. Okrem toho sme vyhodnocovali účinnosť algoritmu Thompsonovo vzorkovanie pre 
stacionárne a pohybujúce sa uzly a ukázalo sa, že ide o energeticky najefektívnejšie a spoľahlivé 
riešenie v husto osídlených mestských prostrediach s cieľom dlhodobej prevádzky koncových 
zariadení a častou potrebou odosielať správy. 

 
Kľúčové slová: problém viacrukého banditu, lora@fiit, škálovateľnosť, lora, komunikačné parametre, 
zefektívnenie komunikácie, energetická úspora, iot, mabp, internet vecí, strojové učenie 
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Abstract	

With an increasing number of connected end devices in Internet of Things networks, a demand for 
scalable and adaptable solutions arises. In recent years, research on low-power wide area networks 
proved that a distributed learning strategy easily outperforms a centralized solution, representing 
the current state-of-the-art. 

LoRa is a very promising technology for utilization in mobile nodes but lacks a proper mechanism to 
adapt to network changes and effectively set communication parameters to minimize the collision 
rate and maximize network reliability. Another concern is power consumption, which should be 
closely examined to compare with currently available solutions as there is a demand for end devices 
to last on a single battery for several years.   

In this document, the current state of research in the optimization of communication of LoRa devices 
is examined. The analysis focuses on the optimization of communication using a distributed learning 
strategy, where available multi-armed bandit algorithms are compared. Due to a lower complexity 
and simulation results, Thompson Sampling is a candidate for a distributed learning solution in LoRa 
networks. The thesis continues with an analysis of two different lightweight carrier sensing 
approaches, favoring a more battery-friendly approach utilizing a built-in hardware mechanism, 
called Channel Activity Detection. Popular network simulators are further examined ranging from 
purely mathematical solutions, through custom simulators, to modules for popular network 
simulators (NS-3). We have briefly examined each of them and selected the most appropriate one. 
All of this is to prepare LoRa networks for deployment in a dense urban environment.  

In the later chapters, we have proposed our solution, which enhances the learning process of the End 
Nodes in terms of selecting a reliable primary (Carrier Frequency) and secondary (Spreading Factor) 
channel. The nodes have to select the proper parameters in a harsh and dense environment similar 
to network congestion. We have designed experiments with 10 physical End Nodes in a real-world 
environment to evaluate the performance of the proposed approaches, namely Adaptive Data Rate, 
Upper Confidence Bound with Channel Activity Detection, Thompson Sampling with Channel Activity 
Detection, and pure ALOHA channel access. Additionally, Thompson Sampling has been evaluated for 
both stationary and mobile nodes, proving to be the most power-efficient and reliable solution in 
dense urban environments for the long-term operation of the End Nodes.  

Keywords: multi-armed bandit, iot, multi-armed bandit problem, smart cities, mabp, long-range, 
energy-wise, low-power, lora, lora@fiit, internet of things, communication parameters selection, 
reinforcement learning, communication parameters 
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1 Introduction	

The surge in Internet-connected sensors and devices, especially in the Internet of Things (IoT), is 
growing exponentially [1]. Many of these devices weren't originally designed for the demanding IoT 
environment, compounded by numerous wireless devices sharing the same or similar license-free 
radio bands. Additionally, the prevalence of low-power devices, expected to function on a single 
battery for multiple years, raises concerns about power consumption [1]. 

In a low-power wide area network with only a few connected devices, the collision risk is relatively 
low due to infrequent uplink message transmissions (usually 10 – 30 per hour). LoRa technology 
emerges as one of the most promising solutions for such low-power wide area networks [1]. The 
current go-to solution for optimizing communication parameter selection in LoRa networks is 
adaptive data rate [2], but it faces challenges in dynamic environments, particularly when nodes start 
to move [3]. 

Recent research proposes an alternative to the centralized adaptive data rate solution [3]–[6]. It 
suggests a distributed learning strategy utilizing reinforcement learning, a subset of machine 
learning, which proves effective even in non-stationary settings like those involving mobile nodes. 
However, this approach requires message acknowledgment, posing challenges within duty cycle 
restrictions, where devices in license-free radio bands can only occupy the shared medium for a 
limited time (usually 1% within an hour) [7]. This limitation, known as duty cycle, hinders the 
scalability of distributed reinforcement learning. 

A second challenge arises with the growing number of end nodes requiring message 
acknowledgment. The current method of determining channel occupation by sending an uplink 
message and waiting for acknowledgment leads to faster depletion of duty cycles and energy waste 
due to failed transmissions. To address this, the suggestion is to implement a lightweight carrier 
sensing mechanism to minimize collision risks [8], [9]. 

Despite the inevitable increase in power consumption per transmission with reinforcement learning 
and carrier sensing, cumulative energy consumption is generally lower due to the incorporation of 
collision mitigation mechanisms [8], [9]. The main culprits for the low reliability of low-power wide 
area networks lie in slow adaptiveness, the absence of collision-mitigation mechanisms, and 
imperfectly orthogonal spreading factors. To ready mobile LoRa nodes for real-world deployment, 
additional research is imperative to improve the adaptiveness and scalability of LoRa networks. 

The document's structure involves a detailed analysis of current research on LoRa technology and 
optimization techniques for communication in LoRa nodes. Chapters cover challenges for LPWANs, 
an introduction to LoRa technology, its protocol, modern approaches for optimizing communication 
parameters, focusing on distributed learning and carrier sensing mechanisms, and a concluding 
chapter [1]. 
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2 Low-Power	Wide-Area	Networks	

In this chapter, the focus is on low-power wide-area networks (LPWANs), particularly addressing the 
challenges associated with ensuring scalability, efficient energy management, and communication 
parameters selection, with a specific emphasis on LoRa technology [10]. 

LPWANs encompass diverse devices with constrained resources such as limited power supply, 
memory, and processing capabilities, transmitting small data amounts over extensive distances. The 
coverage area varies based on environmental factors, making them suitable for both urban and rural 
settings. End devices in LPWANs are generally low-cost and may be physically inaccessible, 
emphasizing the need for prolonged battery life [12]. 

The document delves into technical details, focusing on LoRa technology and its link layer protocol, 
LoRa@FIIT. LoRa operates in unlicensed ISM bands, exhibiting interference resistance and immunity 
to the Doppler effect. LoRa networks cater to devices transmitting small data amounts over long 
distances, with a unique feature allowing downlink messages to follow uplink messages. However, 
LoRa devices face duty cycle constraints due to the unlicensed band operation [18]. 

Efficient energy management is crucial for LPWAN end devices with limited power supplies, 
necessitating prolonged battery life. Studies explore optimal end node configurations, considering 
power supply limitations and communication parameter selection [11], [23], [29]–[31]. Battery 
lifetime evaluations and considerations of battery types emphasize the importance of energy 
efficiency [33], [35]. 

Communication parameters selection algorithms, a recent area of interest, aim to minimize 
collisions, increase packet delivery ratios, and optimize battery efficiency. Challenges arise as more 
devices join networks, requiring effective solutions for rapid device increase and interference from 
other technologies [3], [26], [27]. The need for testing proposed solutions in dense environments is 
underscored, particularly for applications in smart cities facing increased collision risks [39]. 
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3 LoRa	Technology	

This chapter dives into the analysis of LoRa's physical layer modulation technology and its associated 
link layer protocol, LoRa@FIIT, known for its enhanced battery efficiency compared to the widely 
deployed LoRaWAN [32]. While briefly introducing the concepts of LoRaWAN [19] for comparative 
purposes, the focus remains on the more efficient LoRa@FIIT. 

3.1 LoRa	Physical	Modulation	
LoRa, a prominent IoT technology, operates across expansive geographical areas with minimal power 
demands and low data rates. Utilizing Chirp Spread Spectrum (CSS) modulation, LoRa ensures a 
consistent frequency and time offset between sender and receiver, simplifying complexity [10]. The 
chapter outlines key configuration parameters for LoRa networks, including Carrier Frequency, 
Transmission Power, Spreading Factor, Coding Rate, and Bandwidth [26], [33], [34]. Emphasis is 
placed on the efficient communication-parameters selection process, aiming for partial 
independence of end devices from the network server [48]. 

The discussion encompasses the Capture Effect, a phenomenon impacting packet delivery ratio 
(PDR), and Spreading Factor Collisions, highlighting intra-SF and inter-SF collisions in LoRa networks 
[4], [8], [9], [37]. Specific use cases are presented where well-known rules cannot be applied, 
necessitating a careful consideration of network behavior in real-world scenarios. 

3.2 LoRa@FIIT	Protocol	
In response to the limitations of LoRaWAN, the LoRa@FIIT protocol has been developed, offering 
notable advantages [32]. With a shorter header, optional acknowledgments, and inherent support 
for Quality of Service, it utilizes the XXTEA encryption algorithm tailored for IoT devices [53]. Unlike 
LoRaWAN, LoRa@FIIT employs a single key for communication with both the Network Server and 
Application Server, limiting its use to scenarios where the owner of the network server is also the 
owner of all communicating devices. It supports only Class A devices, offering a more energy-efficient 
solution [32], [54]. 

LoRa@FIIT Messages 

LoRa@FIIT introduces four message types [32]: 

1. Register message. Used for end devices to register with the network, employing over-the-air 
activation (OTAA) for enhanced security. Acknowledgment is mandatory for network joining. 

2. Data message. Sends actual data to all access points (APs) with optional or mandatory 
acknowledgment, providing flexibility based on application requirements. 

3. Emergency message. Prioritizes important data, processed ahead of other messages, with 
mandatory acknowledgment. 

4. Hello message. Functions as a keepalive mechanism, ensuring communication between end 
devices and APs. This message also requires mandatory acknowledgment. 



9 

 

Depending on the message type, various packet structures for both uplink and downlink messages 
are introduced in LoRa@FIIT [32]. These structures undergo encryption using the XXTEA cipher, with 
specific fields such as device ID, message type, and Diffie-Hellman keys remaining unencrypted [32]. 

LoRa@FIIT Network Architecture 

LoRa@FIIT simplifies network architecture, eliminating the need for roaming support and MQTT 
communication between Network Server and APs. It employs the Secure TCP for IoT (STIoT) for 
communication [32]. The architecture, illustrated in Figure 1, ensures secure communication 
channels through TLS encryption, with the current implementation using TLSv1.3 [43]. 

 

Figure 1: Typical LoRa@FIIT network architecture 
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4 Optimization	of	Communication	in	LoRa	Networks	

The selection of communication parameters (CP) for end devices can significantly impact battery life, 
with a potential 47% loss due to suboptimal decision-making or insufficient information from the 
network server [29]. This issue not only hampers further development but also challenges the 
fundamental IoT device feature of long-lasting battery performance, often measured in months to 
years. 

In this chapter, we delve into algorithms aimed at enhancing communication efficiency, focusing on 
key aspects: 

1. Collision Mitigations: Strategies involve reducing collision rates by choosing less congested 
channels and preventing collisions through pre-transmission listening. 

2. Energy Consumption: Prioritizing power efficiency through battery-friendly parameters and 
adapting swiftly to network changes. 

3. Packet Delivery Ratio (PDR): Emphasizing increased PDR while ensuring Quality of Service 
(QoS), tailored to specific application needs. 

4. Learning Process Enhancement: Addressing the challenge of discovering the network state 
for end devices, considering the energy and duty cycle costs associated with frequent 
information exchange between the Network Server (NS) and end nodes (EN). 

4.1 Overview	 of	 Distributed	 Learning	 Strategy	 Using	 Reinforcement	
Learning	

The challenge of selecting optimal communication parameters is likened to a multi-armed bandit 
problem (MABP), where dynamic rewards necessitate a careful balance between exploration and 
exploitation. Various Multi-Armed Bandit Algorithms (MABAs) have been employed, including: 

1. Upper Confidence Bound (UCB): A stochastic MABA that sets upper bounds for each arm (CP 
combination). While easy to implement, it performs suboptimally in dynamic scenarios 
compared to other algorithms like EXP3.S or Global Switching Thompson Sampling with 
Bayesian Aggregation (STSBA) [3], [5]. 

2. Thompson Sampling (TS): A stochastic and probability matching algorithm designed for 
stationary environments but proven effective in non-stationary ones. Its modified version 
maintains similar performance in non-stationary settings with a lower impact on battery life 
[3], [5] [56]. 

3. EXP3: An adversarial MABA that theoretically performs worse than stochastic algorithms but 
adapts well to non-stationary settings, making it crucial for the rapid growth of ENs and 
support for mobile nodes. Its enhanced version, EXP3.S, significantly shortens learning time 
[4], [47]. 

Stochastic algorithms tend to find local maxima quickly but might be less effective. In contrast, 
adversarial algorithms like EXP3 adapt well to different environments but suffer from longer 
conversion times. The choice between them depends on the specific requirements of the IoT 
deployment [56]. 
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In conclusion, the selection of communication parameters and the adoption of appropriate multi-
armed bandit algorithms are essential for optimizing communication efficiency in IoT networks, 
ensuring prolonged battery life and robust performance. 

4.2 LoRa	Network	Simulators	
LoRaWAN, a cost-effective and low-power communication technology for IoT devices, is gaining 
prominence. As the number of IoT devices continues to surge, there's a growing need to simulate 
network conditions for power and communication efficiency estimation before actual deployment. 
Network simulators play a pivotal role in this research, allowing the simulation of thousands of End 
Nodes (ENs) connected to multiple Access Points (APs) to assess communication parameter selection 
strategies. 

LoRa network simulators fall into distinct categories based on various sources. These include purely 
mathematical simulations, NS-3 simulations leveraging developed plugins, and custom network 
simulators catering to specific needs. While purely mathematical simulations offer abstraction with 
potential application in real-world scenarios, NS-3 simulations, particularly with an energy 
framework, provide a closer representation of actual conditions. Custom network simulators address 
specific aspects not fully covered by existing solutions [9], [10], [12], [28], [37], [38], [41], [47], [49], 
[60], [62]. 

Noteworthy NS-3 modules for LoRa include LoRaWAN ns-3 module, LoRaWAN Partial Network 
Implementation, and LoRa ns-3 dev module. These modules, integrated into the popular open-source 
network simulator NS-3, facilitate comprehensive LoRa and LoRaWAN simulations with support and 
contributions from a vibrant community. 

In addition to NS-3, custom network simulators like LoRaSim contribute to the simulation landscape. 
LoRaSim, a discrete event simulator implemented in Python, incorporates features such as setting 
transmission parameters, custom payload definition, and modeling communication range based on a 
log-distance path loss model. The simulator also considers receiver sensitivity, collision behavior, and 
the capture effect [SimPy]. 

IoT-MAB, a decentralized intelligent resource allocation approach for LoRaWAN networks, stands out 
as a solution for optimizing resource allocation in LoRaWAN. Furthermore, the LoRa@FIIT Access 
Point and End Nodes simulator, an open-source STIoT packet generator, specifically simulates LoRa 
wireless access points and end nodes using the LoRa@FIIT protocol. The simulator boasts a range of 
features, including QoS support, emergency message handling, duty cycle constraints, and parameter 
selection strategies such as Upper Confidence Bound and Thompson Sampling. 

As LoRa technology continues to evolve, these simulators play a crucial role in advancing research, 
testing, and optimization, ensuring the efficient deployment of LoRaWAN networks in diverse 
scenarios. Researchers can leverage these tools to analyze and enhance the performance, reliability, 
and energy efficiency of LoRa-based IoT systems [70].  
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5 Thesis	Goals	

Previous research has demonstrated that the utilization of reinforcement learning can effectively 
minimize power consumption in dense and harsh environments. In this study, we seek to evaluate 
real-world scenarios and further enhance the learning process by incorporating channel activity 
detection where feasible. All aspects of the research are meticulously designed with energy 
consumption in mind. Additionally, a simulator will be developed to verify scalability and delve 
deeper into the optimization of IoT communication. 

1. Improvement of Communication-Parameters Selection: 

• Utilize a decentralized learning process instead of a fully centralized solution. 

• Propose a solution capable of selecting an appropriate carrier channel (carrier frequency) 
and sub-channel (spreading factor) based on minimal energy consumption (transmission 
power). 

2. Implementation of Multi-Armed Bandit Algorithm: 

• Implement a selected multi-armed bandit algorithm to establish a fully distributed 
learning strategy for dense and harsh environments. 

• Modify and optimize the algorithm as necessary. 

3. Estimation and Measurements of Energy Consumption: 

• Assess the energy consumption of autonomous bandit nodes. 

• Compare the energy consumption with the current state-of-the-art solution, which 
involves the centralized selection of communication parameters. 

4. Evaluation of Performance Metrics for Mobile Nodes: 

• Evaluate performance metrics for mobile nodes operating in a dynamic environment 
with multiple wireless access points. 

• Assess the performance as each end node switches between different access points. 
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6 Design	and	Implementation	

In this chapter, the authors present a novel approach to communication parameter selection using a 
reinforcement learning algorithm. The end nodes store statistics from previous parameter selections, 
determining whether they can transmit on selected Spreading Factors (SF) and Coding Rates (CF). To 
improve the learning process, a channel activity detection mechanism minimizes collisions and 
prevents duty cycle depletion. 

The chapter covers the design of firmware for end nodes, the LoRa@FIIT network architecture, 
methods for power consumption estimation, and changes to the network server, access point, and 
end node for enhanced learning. The proposed solution introduces key enhancements, including the 
design of the end node, utilization of a multi-armed bandit algorithm, channel activity detection, 
LoRa@FIIT architecture, and power estimation methods. A LoRa@FIIT simulator is developed to 
assess scalability. 

6.1 Hardware	Stack	
The hardware stack of the proposed end node is discussed, presenting two possible hardware 
options: the LilyGo LoRa ESP32 and LoRa Radio Node v1.0. Details of the hardware components, such 
as the ESP32 microcontroller, LoRa transceiver, antenna connectivity, GPIO pins, programmability, 
and battery management, are provided. The section compares two hardware options: LilyGo ESP32 
and LoRa Radio Node. 

The use of EEPROM data memory in the ATmega328P processor is explained, highlighting its 
advantages, such as non-volatile storage, limited SRAM impact, reduced wear, flexibility, and data 
integrity. Trade-offs and considerations for EEPROM usage are discussed. The authors emphasize the 
practical choice of using EEPROM for network data storage in systems with limited SRAM and the 
need for non-volatile storage. 

6.2 Software	Stack	
In this section, the authors conduct an analysis of the original software stack for LoRa@FIIT 
communications, incorporating modifications detailed in [94, 95, 96]. The focus is on examining the 
main features and limitations of the LoRa@FIIT software library. 

The improved implementation of the LoRa@FIIT library for ATMega328P-based processors includes 
various functionalities, many of which were added in previous research ([94, 95, 96]). The library, 
available online [53], encompasses features such as transmission and reception of LoRa@FIIT 
messages, network data configuration (manual or automatic), key management during join 
procedures, counter value overflow handling, estimated calculation of message transmission time, 
and the selection of the best Spreading Factor using the Upper Confidence Bound algorithm. 
Additionally, lightweight carrier sensing utilizing Channel Activity Detection for LoRa preambles has 
been introduced. 

6.3 Implementation	 of	 the	 Reinforcement	 Learning	 Algorithm	Using	
Upper	Confidence	Bound	

The UCB (Upper Confidence Bound) algorithm's objective within the LoRa@FIIT Software Library is to 
select the Spreading Factor (SF) likely to optimize performance, emphasizing minimal energy 
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consumption and maximal Packet Delivery Ratio (PDR). The library utilizes the "pickBestSF(float bw)" 
method for SF selection before transmission, with the current implementation exclusively supporting 
the UCB algorithm. 

In the proposed modifications to the end node component, various considerations are addressed. 
Hardware availability in the Slovak market limits the choice of LoRa transceivers, prompting the use 
of available devices at the faculty. Time synchronization becomes crucial, leading to the exploration 
of timing possibilities and reboot memory retention on the Arduino Pro Mini platform (ATmega328P) 
chosen for fast prototyping. 

6.4 Utilization	of	Thompson	Sampling	Algorithm	 for	Communication	
Parameters	Selection	

In this section, the focus is on the application of the proposed Thompson Sampling algorithm in the 
Communication Parameter (CP) selection process. The aim is to enhance efficiency for ultra-low-
power devices, where code optimization significantly impacts performance and energy consumption, 
especially for low-power devices with limited resources. 

The proposed Thompson Sampling algorithm implementation is built on [97], with necessary steps 
for code optimization targeting the low-power ATmega328P processor. The functionality of SF 
(Spreading Factor) selection is divided into three main functions: init, pull, and update. The init 
function initializes variables and generates sample rewards. The pull function selects the SF for the 
next transmission based on mean values of probability, while the update function updates relevant 
parameters after a transmission. 

6.5 Utilization	 of	 Channel	 Activity	 Detection	 to	 Enhance	 Learning	
Process	

To enhance the learning process of the Multi-Armed Bandit (MAB), the authors propose 
incorporating short period listening during CAD, enabling the MAB to learn not only from 
acknowledged messages (which can lead to fast duty cycle depletion and is not scalable) but also 
from short periods of listening when the selected wireless channel is unoccupied by other nodes. The 
CAD process involves initialization, CAD operation, signal reception, and subsequent decision-making 
based on the correlation results. 

The CAD mechanism, as implemented in the LoRa@FIIT library, detects LoRa preamble signals rather 
than very weak or intermittent signals, making it less reliable for longer distances [96]. The provided 
code snippet showcases the CAD implementation using the RadioHead library on an Arduino Pro Mini 
with the LoRa Radio Node, offering a practical example of CAD integration. 

The Finite State Machine (FSM) diagram in Figure 2 illustrates the proposed solution using Thompson 
Sampling (TS) with CAD. The node transitions through states such as IDLE, SEL (selection), CAD, TX 
(transmission), INC (increase probability), DEC (decrease probability), SLP (sleep), WUP (wake up), 
CLR (clear channel), BSY (busy channel), ACK (acknowledged), and nACK (not acknowledged). The 
FSM depicts the process of CP selection, CAD, message transmission, acknowledgment handling, and 
the subsequent transition to sleep or idle states based on channel conditions and acknowledgment 
status. 

Additionally, an alternative solution without a CAD mechanism, utilizing a primary ALOHA channel 
access. In this scenario, the node wakes up, selects CP using TS, and immediately transmits a 
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message. The process includes states such as IDLE, SEL, TX, INC, DEC, SLP, WUP, ACK, and nACK, 
illustrating the CP selection, message transmission, acknowledgment handling, and state transitions. 

 

 

Figure 2: The description of TS with CAD using a FSM 
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Figure 3: The description of TS with ALOHA channel access using a FSM 

 

6.6 Proposed	Network	Architecture	
In this section, we present the network architecture designed for the evaluation of proposed 
modifications. The architecture comprises the following components: 

1. LoRa@FIIT End Nodes (ENs). Ten nodes utilizing LoRa radio modules for communication with 
the network server. 

2. LoRa@FIIT Access Points (APs). Two access points strategically placed in different rooms. 
3. LoRa Network Server. Central management point for the LoRa@FIIT network, leveraging 

PostgreSQL for data persistence. 
4. Jupyter Notebook and Bash Script. Specifically crafted for experiment evaluation, 

streamlining the assessment process. 

The design incorporates a limited number of ENs and APs, aligning with duty-cycle restrictions in 
Europe and constraints posed by hardware availability at the faculty. 

6.7 Experiments	Setup	
To assess the impact of proposed modifications, we have designed specific scenarios utilizing the 
LoRa@FIIT network architecture: 

1. Scenario 1. Static nodes with pure ALOHA channel access and Adaptive Data Rate (ADR). 
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2. Scenario 2. Static nodes with Channel Activity Detection (CAD) and Upper Confidence Bound 
(UCB). 

3. Scenario 3. Static nodes with CAD and Thompson Sampling. 
4. Scenario 4. Dynamic nodes with pure ALOHA channel access and Thompson Sampling. 
5. Scenario 5. Dynamic nodes with CAD and Thompson Sampling. 

Each scenario involves 10 - 11 LoRa Nodes, 2 Access Points, and a Network Server supporting 
LoRa@FIIT protocol. End Nodes (ENs) dependent on the Network Server are distinguished from 
Bandit Nodes utilizing Thompson Sampling, UCB, or any other Multi-Armed Bandit Algorithm. 

All scenarios run five times over 3 hours, with periodic uplink messages every 70 seconds, creating a 
challenging environment. The communication parameters (CR: 4/5, BW: 125 kHz) remain constant. 
ENs cover a 261 m² area across three rooms within the FIIT STU building, focusing on utilizing CAD to 
enhance Multi-Armed Bandit Algorithm (MABA) learning rather than long-distance communication. 

Key metrics for performance evaluation include: 

1. Packet Delivery Ratio (PDR). The ratio of successfully delivered packets to the network 
server over all sent packets, including failed attempts. 

2. Energy Consumption of EN (EC). Measured current consumption using PPKII. 
3. Distribution of Spreading Factors (SF) and Carrier Frequency (CF). Ensuring uniform 

utilization across SF and CF values, especially focusing on lower SFs near Access Points. 
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7 Results	

Following the successful implementation of Thompson Sampling (TS) and the integration of Channel 
Activity Detection (CAD) to enhance the learning process of Bandit Nodes (BNs), the code was 
published on GitHub as open source [53]. Subsequent experiments were conducted to validate the 
proposed contributions, and this chapter provides a summary of the experimental results. 

The initial set of experiments focuses on demonstrating the effectiveness of the proposed 
communication parameter selection methods and the node-centered approach for code 
optimization. Stationary nodes scenarios (1-3) are detailed in Section 7.1, while scenarios involving 
mobile nodes (4-5) are covered in Section 7.2. The second set of experiments delves into illustrating 
the benefits of energy profiling for Energy Nodes (ENs), as discussed in Section 7.3. 

To facilitate result evaluation, an open-source LoRa Jupyter Notebook, named LoBook, was 
developed and released. This notebook aids in the analysis of collected data, and its processing is 
accessible to anyone interested in verifying or conducting further analysis [102]. 

A detailed description of the evaluated dataset, created using the collected data, is available in 
Appendix A. Additional photo documentation of the proposed solution is provided on GitHub [102]. 
Guidelines for embedded system development, based on the necessary optimization steps, can be 
found in Appendix C. 

To streamline the evaluation process, a simple bash script was designed to export the database table 
from a PostgreSQL instance running in a Docker container on lora.fiitacademy.fiit.stuba.sk (or 
previously lora.fiit.stuba.sk) to a CSV file. This file is then ingested into LoBook for analysis. Further 
details on this process can be found in Appendix B. The aim is to empower users to assess and verify 
the data, aligning with the goal of transparency and openness in the experimental analysis. 

7.1 Results	of	Experiments	with	Stationary	Nodes	
In this section, the results of experiments involving stationary nodes and the optimization of 
communication parameters are discussed. The experiments utilized 10 stationary nodes, generating 
numerous uplink messages stored in a PostgreSQL database and later exported to CSV format. Three 
approaches, centralized ADR, distributed node centric UCB, and TS, were employed in an indoor 
physical environment. 

The experiments covered a 261 m² area, creating a congested network environment with challenges 
like high collision rates and limited access points (APs). The primary objective was to evaluate 
whether nodes could adapt to the environment without prior information. The experiments involved 
a short learning period, and each node used static settings for communication parameters, including 
coding rate (CR), bandwidth (BW), payload size, and uplink periodicity. 

The communication process selection algorithms aimed to detect and adapt to the unknown 
environment based on limited knowledge within a constrained time. The experiments consisted of 
five rounds, each lasting three hours, assessing the adaptability of nodes to changing conditions. 

Results were analysed based on CF and SF distribution, as well as the Packet Delivery Ratio (PDR), 
Signal-to-Noise Ratio (SNR), and Received Signal Strength Indicator (RSSI). The experiments 
demonstrated that the TS algorithm showed stability and scalability, outperforming ADR and UCB in 
terms of PDR and efficient CF and SF distribution. 
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The summary of rounds revealed that ADR struggled with SF12 usage, leading to poor scalability. UCB 
improved scalability but had a slow learning curve. TS consistently distributed the load effectively, 
achieving the best PDR and suitable CF and SF selection. Challenges and recommendations for 
further optimization were discussed, emphasizing the need for accurate implementation and in-
depth traffic analysis to enhance the communication parameter selection process. 

7.2 Results	of	Experiments	with	Mobile	Nodes	
This section presents the findings from four rounds of Scenario 4-5 experiments, examining the 
performance of mobile nodes.  

The initial round analyzes mobile node experiments over 3 hours. SF8 and SF9 dominate, with SF7 
and SF10 following. Mobile nodes, distant from APs, utilize SF11 and SF12 more than stationary 
nodes. CF 866.9 MHz and 866.1 MHz lead in uplink messages, favoring ALOHA on CF 866.9 MHz. CAD 
achieves higher PDR (43.80%) than ALOHA (26.80%). Examining results after 6 hours, CAD 
demonstrates improved PDR (70.06%) over ALOHA (28.57%). Both algorithms evenly use frequencies, 
with CAD surpassing in message count. CF distribution remains consistent. 

Results after 9 hours exhibit CAD's superior PDR (47.66%) compared to ALOHA (14.03%). Both 
maintain even frequency distribution, but CAD excels in message delivery on specific CF and SF. 
Results after 12 hours reveal CAD's continued superiority with a PDR of 52.45%, outperforming 
ALOHA's 19.84%. Both algorithms exhibit even CF distribution, with CAD excelling on SF8 and SF9. In 
the final round, CAD maintains superiority with a PDR of 42.40%, surpassing ALOHA's 15.39%. Both 
algorithms exhibit consistent CF and SF distributions. 

The experiments demonstrate the scalability and adaptability of the MAB node-centric approach in 
dynamic environments. The CAD approach consistently outperforms ALOHA in PDR, emphasizing its 
effectiveness in dense environments. However, challenges persist in certain operations without NS 
intervention. The experiments, conducted in real-world conditions, highlight the need for future 
simulator development. 

7.3 Energy	Consumption	Profiling	
In this section, the energy profiles of different scenarios are meticulously examined, utilizing the 
Power Profile Kit II by Nordic Semiconductors [100]. The scenarios include: 

1. Energy profile of the original solution using ADR and ALOHA channel access. 
2. Energy profile of the UCB with CAD being enabled. 
3. Energy profile of the stationary TS with ALOHA channel access. 
4. Energy profile of the mobile TS with ALOHA channel access. 
5. Energy profile of the mobile TS with CAD approach. 

For the original solution (ADR with ALOHA), the mean current consumption was 23.79 mA with a 
meager mean PDR of 18.30%. The UCB with CAD exhibited a lower mean current of 16.89 mA but 
with a moderate PDR of 54.80%. However, the stationary TS with CAD outperformed others with a 
mean current of 18.41 mA and a significantly higher mean PDR of 72.40%. 
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Table 1: The comparison of current consumption and Packet Delivery Ratio for stationary nodes 

Algorithm Round Average current 
[mA] 

Peak current 
[mA] 

Mean PDR [%] 

Adaptive Data 
Rate with ALOHA 

1 21.57 106.50 215.19 

2 25.28 107.25 18.38 

3 23.31 107.25 20.65 

4 23.80 107.25 15.20 

5 25.00 107.25 18.96 

Upper Confidence 
Bound with 

Channel Activity 
Detection 

1 16.39 115.53 55.59 

2 14.58 109.51 60.06 

3 14.98 109.51 54.04 

4 17.44 109.51 50.26 

5 21.07 109.51 54.03 

Thompson 
Sampling with 

Channel Activity 
Detection 

1 17.39 109.51 87.21 

2 18.43 112.52 80.97 

3 18.75 112.52 55.78 

4 18.77 112.52 84.29 

5 18.71 112.52 53.76 

 

The energy consumption profiles are further detailed for each scenario. In the original solution, 
power optimization steps were applied, resulting in a mean current of 23.79 mA. The UCB with CAD 
achieved a mean current of 16.89 mA but with only moderate PDR. Notably, the stationary TS with 
CAD proved to be the most successful with a mean current of 18.41 mA and a high PDR of 72.40%. 

In the mobile TS with ALOHA scenario, average current values ranged from 27.15 mA to 18.70 mA 
across five rounds, with consistently poor mean PDR results. Conversely, the TS with CAD for mobile 
nodes demonstrated improved results, with mean current ranging from 23.19 mA to 16.66 mA and 
more favorable PDR values. 
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Table 2: The comparison of current consumption and Packet Delivery Radio for mobile nodes 

Algorithm Round Average current 
[mA] 

Peak current 
[mA] 

Mean PDR [%] 

Thompson 
Sampling with 

ALOHA 

1 27.15 106.50 26.80 

2 32.25 109.51 28.57 

3 25.84 109.51 14.03 

4 19.56 109.51 19.84 

5 18.70 109.51 15.39 

Thompson 
Sampling with 

Channel Activity 
Detection 

1 23.19 105.00 43.80 

2 20.74 110.26 70.06 

3 23.92 110.26 47.66 

4 16.72 110.26 52.45 

5 16.66 110.26 42.40 

 

The experiments highlight the effectiveness of the TS with CAD approach, particularly for stationary 
nodes, demonstrating stable energy consumption and superior PDR results in congested 
environments. The findings suggest tailored approaches based on specific requirements and 
environmental considerations. 

7.4 Summary	
The experiment outcomes and summary are presented in Table 1 and Table 2, evaluating the overall 
current flow and mean Packet Delivery Ratio (PDR) for various approaches with stationary and 
mobile nodes. The PDR values are color-coded for easy interpretation, with red indicating very poor 
performance, orange for poor performance, yellow for moderate performance, and green for good 
performance in congested environments. 

The ADR_A algorithm exhibits high average current consumption (CC) and exceptionally poor PDR, 
notably 215.19% in the 1st round due to unexpected unique uplink messages. The UCB_C algorithm 
achieves the lowest CC but only moderate PDR. The UCB algorithm demonstrates power efficiency 
but with lower PDR compared to TS, attributed to its simple implementation and zero reward 
calculation. 

TS for stationary nodes initially displays moderate power consumption (17.39 mA) in the 1st round, 
maintaining a balanced CC-PDR trade-off. The later rounds show slight fluctuations, with TS offering a 
favorable compromise between power efficiency and PDR. 

Table 2 focuses on mobile nodes, where TS_A and TS_C exhibit variations in EC and PDR across 
rounds. The 1st round of TS_C shows optimal power efficiency. Despite lower PDR with mobile 
nodes, it aligns with expectations in certain unreachable areas. 
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The experiments emphasize evaluating reliability in congested environments for long-term 
operation. Results indicate that Thompson Sampling proves beneficial in such settings, especially for 
extended durations. ADR may be preferred for environments prioritizing minimal energy 
consumption, suitable for rural areas with lower congestion probability and longer node distances. 

Conversely, CAD's impracticality for distances exceeding 1 km in rural areas is noted, prompting 
consideration of the Multi-Armed Bandit (MAB) approach with CAD for urban areas. This approach 
enhances security, minimizing the risk of channel jamming. The MAB with CAD is deemed beneficial 
for urban scenarios with frequent message transmissions and shorter payloads, improving solution 
security and minimizing single-channel or channel jamming probability. 

In conclusion, the experiments recommend tailored approaches based on the environmental 
context, advocating for Thompson Sampling in congested settings and ADR or MAB with CAD in rural 
or urban scenarios, respectively. 
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8 Conclusion	

This document delves into the existing challenges faced by low-power wide area networks (LPWANs), 
focusing on the contemporary LoRa technology and the LoRa@FIIT MAC protocol. It explores the 
complexities of communication parameter selection using a reinforcement learning approach and 
highlights the significance of carrier detection in LoRa networks. Additionally, the document provides 
a brief overview of publicly available LoRa simulators. 

One major challenge discussed is the adaptiveness of end devices in mitigating collisions within 
LPWAN networks. The document emphasizes the need for distributed learning mechanisms to 
enhance reliability. However, it acknowledges the limitations of solely relying on end node 
observations for communication parameter selection, prompting the consideration of centralized 
intervention in dynamic network conditions. 

The document also addresses concerns about how end devices learn about beneficial channels 
without acknowledgment from the network server. It introduces the concept of lightweight carrier 
sensing to improve the learning process in dense smart city environments, enabling devices to assess 
channel occupancy and mitigate collisions effectively. 

The selection of appropriate channels and sub-channels is likened to a multi-armed bandit problem, 
where end devices, with limited knowledge, must make choices to minimize collision risks. Despite 
the promising aspects of LoRa technology, which enables long-lasting battery life for devices in IoT 
scenarios, challenges arise due to limited time occupancy within unlicensed radio bands. 

The LoRa@FIIT protocol is introduced as an energy-efficient alternative to the LoRaWAN protocol, 
offering QoS support, a shorter header, different message types, and optional acknowledgments. The 
document explores ways to enhance adaptiveness for mobile devices and proposes modifications to 
the LoRa@FIIT library, incorporating the Thompson Sampling algorithm for SF selection and Channel 
Activity Detection to improve the learning process. 

The main contribution of the dissertation lies in the enhanced process of communication parameter 
selection for the LoRa@FIIT protocol, partially independent of the network server. Experiments 
demonstrate significant improvements in Packet Delivery Ratio (PDR) and current consumption using 
the Thompson Sampling algorithm with Channel Activity Detection compared to existing solutions. 

In conclusion, the document outlines the positive impact of the proposed modifications on PDR and 
current consumption for both stationary and mobile nodes. It underscores the potential of the 
Thompson Sampling algorithm with Channel Activity Detection in overcoming challenges associated 
with adaptive data rate and channel access in LPWAN networks. 
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4. K. Rončkevič, A. Valach and P. Čičák, "Improved Visibility of LoRa Net-
works Using LoRa Performance Evaluation Tool," 2023 Communication and
Information Technologies (KIT), Vysoke Tatry, Slovakia, 2023, pp. 1-7, doi:
10.1109/KIT59097.2023.10297107.

5. Valach, A., Macko, D. (2022). Optimization of LoRa Networks Using Multi-
armed Bandit Algorithms. In: Pandit, M., Gaur, M.K., Rana, P.S., Tiwari, A. (eds)
Artificial Intelligence and Sustainable Computing. Algorithms for Intelligent
Systems. Springer, Singapore. https://doi.org/10.1007/978-981-19-1653-3_29

6. Hroš, D., Valach, A. (2022). System for Management and Visualization of LoRa
Network Components. In: Pandit, M., Gaur, M.K., Rana, P.S., Tiwari, A. (eds)
Artificial Intelligence and Sustainable Computing. Algorithms for Intelligent
Systems. Springer, Singapore. https://doi.org/10.1007/978-981-19-1653-3_30

7. A. Valach and D. Macko, "Optimization of LoRa Devices Communication for Ap-
plications in Healthcare," 2020 43rd International Conference on Telecommunica-
tions and Signal Processing (TSP), 2020, pp. 511-514, doi: 10.1109/TSP49548.20

E-2



20.9163432.
Citations:

(a) Tasoglu, Savas. "Toilet-based continuous health monitoring using urine."
Nature Reviews Urology 19.4 (2022): 219-230.

(b) Lalle, Yandja, et al. "Routing strategies for LoRaWAN multi-hop networks:
A survey and an SDN-based solution for smart water grid." IEEE Access 9
(2021): 168624-168647.

(c) Wei, Yang, et al. "Priority-Based Resource Allocation Optimization for
Multi-Service LoRaWAN Harmonization in Compliance with IEEE 2668."
Sensors 23.5 (2023): 2660.
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