

The 2011 Simulated Car Racing Championship @ CIG-2011

Daniele Loiacono, Luigi Cardamone, Martin V. Butz, and Pier Luca Lanzi

2011 Simulated Car Racing Championship @ CIG-2011

2011 Simulated Car Racing Championship 9 races during 3 conferences

Develop a driver for TORCS (hand-coded, learned, evolved, ...)

Drivers will be awarded based on their score in each conference competition

At the end, the team with highest overall score wins the championship

2011 Simulated Car Racing Championship @ CIG-2011

2

Roadmap of the 2011 Championship

1. EVO*-2011, Torino (Italy) April 27-29, 2011

2. ACM GECCO-2011, Dublin (Ireland) July 12-16, 2011

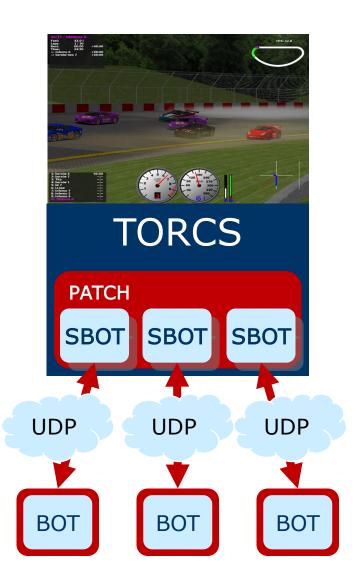
3. IEEE CIG-2011, Seoul (South Korea)

August 31 September 3, 2011

2011 Simulated Car Racing Championship @ CIG-2011

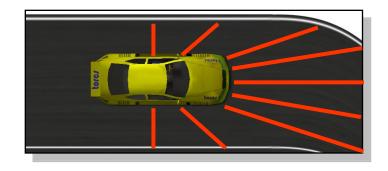
Motivations

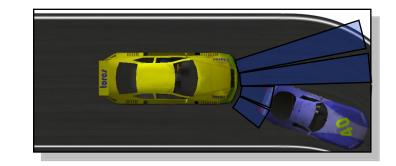
Proposing a relevant game-based competition


- more representative of commercial games AI
- more similar to a real-world problem
- Proposing a funny and exciting competition
 - you can see and play with the entries of this competition
 - human players can interact with AI
 - a lot of programmed AI available for comparison
- Proposing a challenging competition
 - computationally expensive
 - real-time
 - on-line learning
 - noisy sensors

The Open Racing Car Simulator

The Open Racing Car Simulator & the Competition Software




- The competition server
 - Separates the bots from TORCS
 - Build a well-defined sensor model
 - Works in real-time

Sensors and actuators

- Rangefinders for edges on the track and opponents (with noise)
- Speed, RPM, fuel, damage, angle with track, distance race, position on track, etc.

Six effectors: steering wheel [-1,+1], gas pedal [0, +1], brake pedal [0,+1], gearbox {-1,0,1,2,3,4,5,6}, clutch [0,+1], focus direction

2011 Simulated Car Racing Championship @ CIG-2011

What is the structure of a race?

Three stages: warm up, qualifiers, actual race

During warm-up, each driver can explore the track and learn something useful

During qualifiers, each driver races alone against the clock (the best 8 drivers move to the race)

During the race all the drivers race together

8

Competitors

The competitors

□ Four entries in the first leg:

- Mr. Racer, TU Dortmund
- Mariscal & Fernández, Málaga University
- Ready2Win, Slovak University of Technology FIIT
- Powaah, Blekinge Institute of Technology
- Two more entries in the second leg:
 - Ho Duc Thang, University of Nottingham
 - CRABCAR, Norwegian University of Science and Technology (NTNU)
- One entry in the third leg
 - BFB3 Sejong Univ, Korea
- Three reference entries from the past championship:
 - AUTOPIA, Madrid and Granada
 - COBOSTAR (Lönneker & Butz, University of Würzburg)
 - POLIMI (Cardamone, Politecnico di Milano)

Mr Racer

Jan Quadflieg, Tim Delbruegger and Mike Preuss TU Dortmund

Mr. Racer 2011

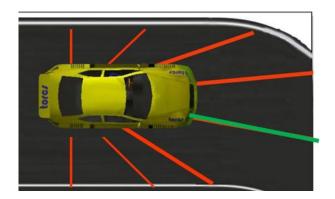
- □ 13 Variables learned offline with the CMA-ES
- Warmup used to learn a model of the track
- Noise Handling:
 - Low pass filter on sensor values
 - 2 Regression polynoms are fitted to each side
 - Resample the polygons
- Overtaking
 - Computes on the fly a recommended speed and an overtaking line
 - Recommendation are provided to a planing module

Mariscal - Fernández

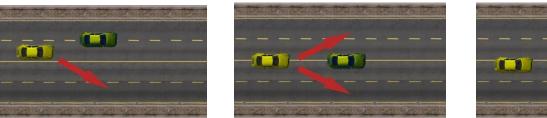
A controller for the Simulated Car Racing Championship

David Mariscal Fernández

david.mariscal@gmail.com


Antonio J. Fernández-Leiva

afdez@lcc.uma.es


Dpto. Lenguajes y Ciencias de la Computación ETSI Informática, Málaga University, Málaga, Spain

Mariscal & Fernández

- General approach: expert systems improved by multiobjectives evolutionary computation techniques
 - Maximize distance.
 - Minimize damage
- Steering based on a simple rule follow the track sensor with biggest distance.

Overtaking based on simple rules and expert systems

2011 Simulated Car Racing Championship @ CIG-2011

POLITECNICO DI MILANO

- **STU・**
- • •
- Faculty of informatics and information technology

Supervisor: Peter Vilhan

Ready2Win team :

Ready2Win 0/20

Maroš Bednár Adam Brček Marek Briš Marián Florek Vojtech Juhász Juraj Kosmeľ Ivan Valenčík

Ready2Win

- Modular architecture:
 - Driving module:
 - The speed is computed using the maximum braking distance
 - Overtaking module
 - Recovery module
 - ABS module
- Track learning during the warm-up:
 - First lap, driven slow, to identify turns (start, end, entry position, curvature) and learn the track model
 - Other laps, speed adaptation:
 - Increasing according to lateral speed
 - Reducing when the car goes off-road

All tune All tune Al

Powaah

Tim Uusitalo Blekinge Institute of Technology Supervisor: Stefan Johanson

Powaah

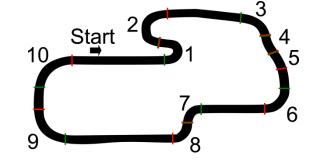
- Based on Artificial Potential Field
- Every sensor in the span (-40, +40) has a charge
- The charge is determined by how far the sensor measures the track
- Coulomb's law is used to calculate potentials in the field Pot = $(C_1 * C_2) / d^2$
- The sensor with the highest potential is used for computing how much steering is needed

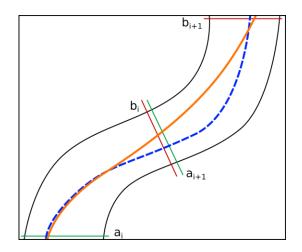
Ho Duc Thang University of Nottingham

www.torcs.org

FIPS: A.D.

Ho Duc Thang


- Hybrid fuzzy controller with a module to learn the model track as the car drives, a module to perform some simple plannings based on the modelled segments of the track and a fuzzy controller which actually drives the car.
- All the modelling, planning and driving are done during the race, the warm-up stage is not exploited
- No opponent handling



CRABCAR By Snorre Corneliussen and Magnus Westergaard, NTNU

CRABCAR

- Turns classification based on sensors during warmup and saved in the track model
- Different evolved strategies to go through the turns
- Strategies are re-evaluated during stages, adjusted and save in the track model
- Simple opponent avoidance based on keeping safe distance

BFB3

Kyung-Joong Kim Jun-ho Seo Tae-seong Kim **Sejong Univ, Korea**

BFB3

Scripted approach

Simple approach for steering and accelerating

□ Jump Detection

- ▶ When the Z-Sensor is more than 0.4
- While the car is jumping and landing(few times, 10 tick count), the steer of car is fixed to forward

Opponent avoidance:

- Just brake if the opponent is approached on a straight
- Modify the normal steering when the opponent is approached in a bend

AUTOPIA

AUTOPIA

Industrial Computer Science Department. Centro de Automática y Robótica Consejo Superior de Investigaciones Científicas Madrid, Spain Contact:E. Onieva (enrique.onieva@car.upm-csic.es)

AUTOPIA

Fuzzy Architecture based on three basic modules for gear, steering and speed control

- optimized with a genetic algorithm
- Learning in the warm-up stage:
 - Maintain a vector with as many real values as tracklength in meters.
 - Vector initialized to 1.0
 - If the vehicle goes out of the track or suffers damage then multiply vector positions from 250 meters before the current position by 0.95.
- During the race the vector is multiplied by F to make the driver more cautious in function of the damage:
 - F=1-0.02*round(damage/1000)

COBOSTAR

COBOSTA

Thies Lönneker and Martin V. Butz University of Würzburg

http://www.coboslab.psychologie.uni-wuerzburg.de

One of the best controller of the 2009 Championship

Parameterized controller optimized with CMA-ES

Dynamically saves crash points

2011 Simulated Car Racing Championship @ CIG-2011

Cardamone

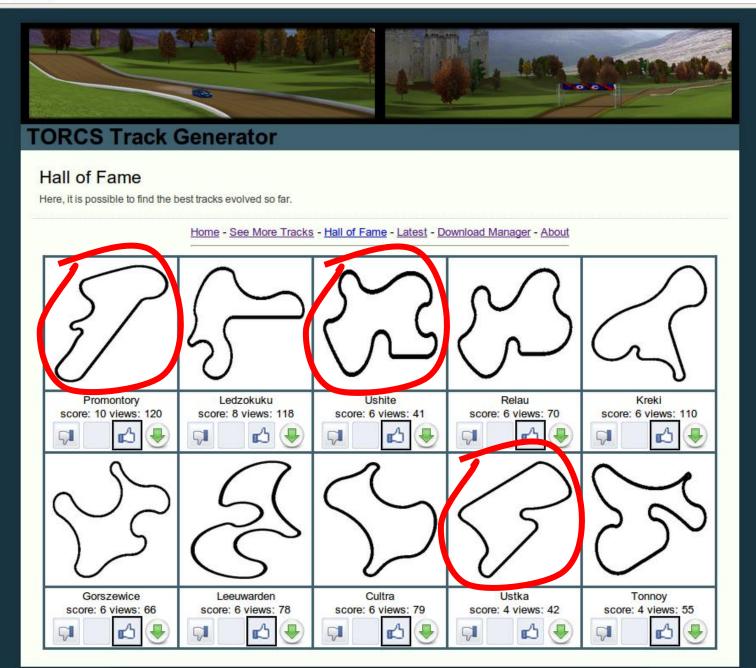
Luigi Cardamone Politecnico di Milano

Luigi Cardamone

□ Winner of the CIG-2008 Car Simulated Competition

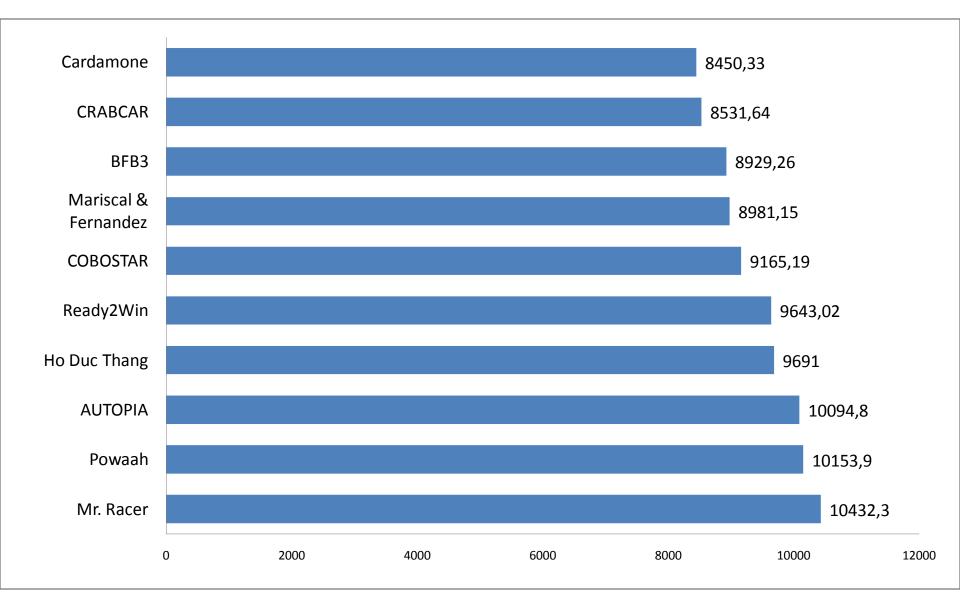
The controller is based on a neural network evolved with NEAT

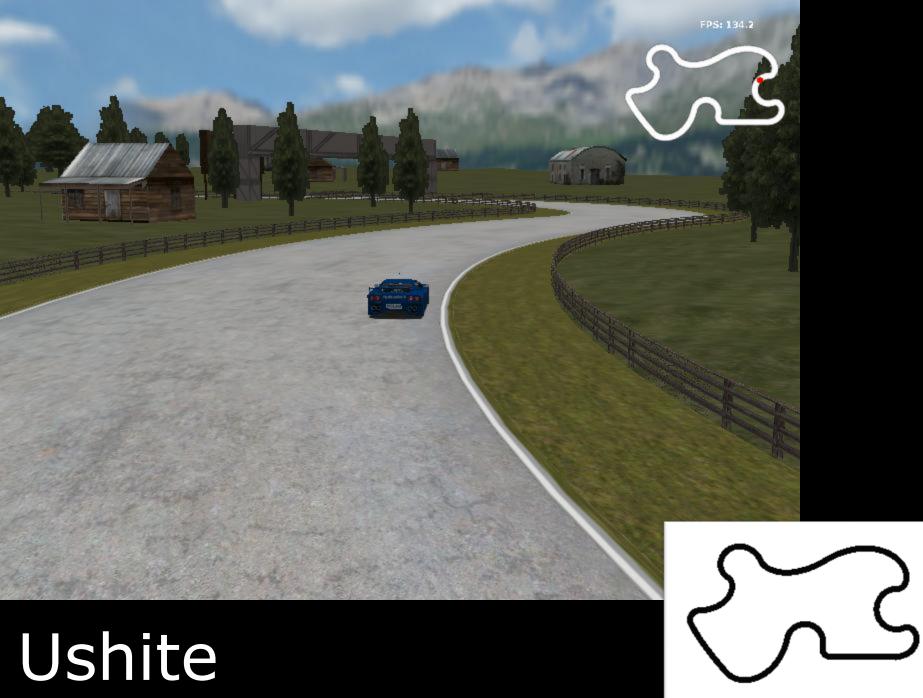
Very simple policy for overtaking

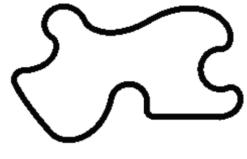

Qualifying

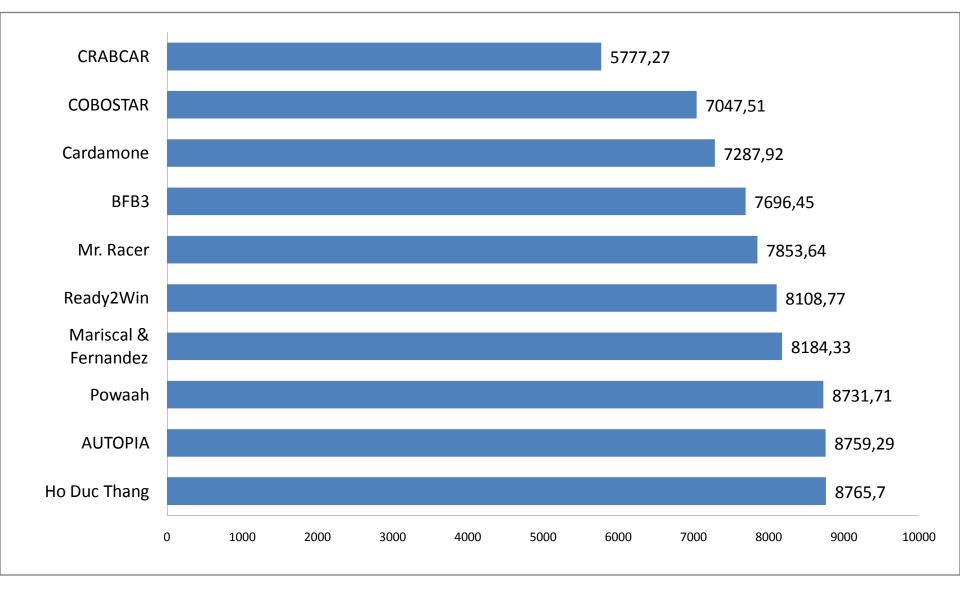
Scoring process: Warm-up & Qualifying

- Scoring process involves three tracks:
 - Promontory
 - Ushite
 - Ustka
- □ The tracks are not distributed with TORCS:
 - Generated through interactive evolutionary computation
 - The competitors cannot know the tracks
- Each controller raced for 100000 game ticks in the warm-up stage and then its performance is computed in the qualifying stage as the distance covered within 10000 game ticks


🏠 🔇 trackgen.pierlucalanzi.net

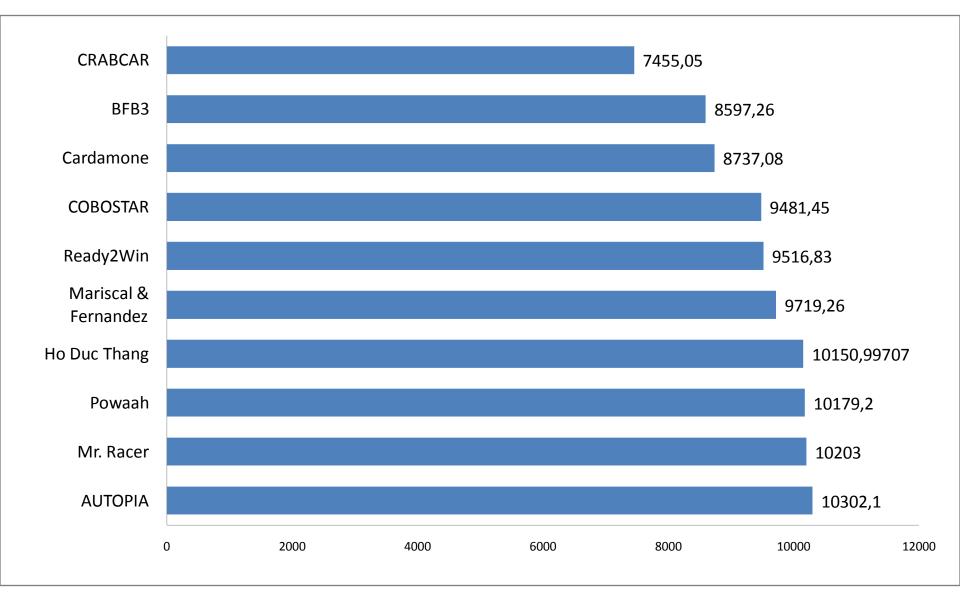



Qualifying: Promontory


2011 Simulated Car Racing Championship @ CIG-2011

POLITECNICO DI MILANO

Qualifying: Ushite



2011 Simulated Car Racing Championship @ CIG-2011

POLITECNICO DI MILANO

Qualifying: Ustka

2011 Simulated Car Racing Championship @ CIG-2011

POLITECNICO DI MILANO

Qualifying summary

Driver	Promontory	Ushite	Ustka	Total
Αυτορία	6	8	10	24
Mr. Racer	10	3	8	21
Powaah	8	6	6	20
Ho Duc Thang	5	10	5	20
Ready2Win	4	4	3	11
Mariscal & Fernandez	2	5	4	11
COBOSTAR	3	0	2	5
BFB3	1	2	0	3
Cardamene	0	1	1	2
CRABCAR	0	0	0	0

2011 Simulated Car Racing Championship @ CIG-2011

Three Tracks

For each track we run 8 races with random starting grids

Each race is scored using the F1 point system (10 to first, 8 to second, 6 to third, ...)

Two points to the controller with lesser damage

Two points for the fastest lap of the race

2011 Simulated Car Racing Championship @ CIG-2011

43

Some videos of the races

2011 Simulated Car Racing Championship @ CIG-2011

POLITECNICO DI MILANO

Race Results

Competitor	Promontory	Ushite	Ustka	Total
Autopia	10	11	11	32
Mr. Racer	7,5	4	7	18,5
Powahh	4	7	6	17
Ready2Win	6	5,5	5	16,5
Mariscal&Ferna ndez	3	3	5	11
BFB3	3,5	4,5	2,5	10,5
COBOSTAR	4,5			
Но	3	2,5	2,5	8

MR. RACER WINNER OF CIG-2011 SIMULATED CAR RACING COMPETITION

2011 Simulated Car Racing Championship @ CIG-2011

What about the race results?

Race Start is crucial!

AUTOPIA still the best controller...

Qualifying and final results very similar (with few exceptions)

Championship's Final Standings

2011 Championship Standings

Competitor	EVO*	GECCO	CIG	Total
Autopia	34	34	32	100
Mr. Racer	22	21	18,5	61,5
Ready2Win	10	19	16,5	45,5
Mariscal&Fernandez	20	14,5	11	45,5
COBOSTAR	17	10,5	10	37,5
Powahh	10	5,5	17	32,5
Но	_	14	8	22
Cardamone	12	_	-	12
BFB3	_	-	10,5	10,5
Crabcar	_	7	-	7

MR. RACER WINNER OF 2011 SIMULATED CAR RACING CHAMPIONSHIP

2011 Simulated Car Racing Championship @ CIG-2011

Thank you!

Questions?